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Cellular convection with finite amplitude in a 
rotating fluid 

By G. VERONIS 
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

(Received 3 July 1958) 

When a rotating layer of fluid is heated uniformly from below and cooled from 
above, the onset of instability is inhibited by the rotation. The first part of this 
paper treats the stability problem as it was considered by Chandrasekhar (1953), 
but with particular emphasis on the physical interpretation of the results. It is 
shown that the time-dependent (overstable) motions occur because they can 
reduce the stabilizing effect of rotation. It is also shown that the boundary of 
a steady convection cell is distorted by the rotation in such a way that the wave- 
length of the cell measured along the distorted boundary is equal to thewavelength 
of the non-rotating cell. This conservation of celIular wavelength is traced to the 
constancy of horizontal vorticity in the rotating and non-rotating systems. In  the 
finite-amplitude investigation the analysis, which is pivoted about the linear 
stability problem, indicates that the fluid can become unstable to finite-amplitude 
disturbances before it becomes unstable to infinitesimal perturbations. The finite- 
amplitude motions generate a non-linear vorticity which tends to counteract the 
vorticity generated by the imposed constraint of rotation. Under experimental 
conditions the two fluids, mercury and air, which are considered in this paper, will 
not exhibit this finite amplitude instability. However, a fluid with a sufficiently 
small Prandtl number will become unstable to finite-amplitude perturbations. 
The special role of viscosity as an energy releasing mechanism in this problem and 
in the Orr-Sommerfeld problem suggests that the occurrence of a finite-amplitude 
instability depends on this dual role of viscosity (i.e. as an energy releasing 
mechanism as well as the more familiar dissipative mechanism). The relative 
stability criterion developed by Malkus & Veronis (1958) is used to determine the 
preferred type of cellular motions which can occur in the fluid. This preferred 
motion is a function of the Prandtl number and the Taylor number. In  the case 
of air it is shown that overstable square cells become preferred in finite amplitude, 
even though steady convective motions occur at  a lower Rayleigh number. 

~~ ~ 

Introduction 
The columnar structure in figure 1 represents the manner in which the boundary 

of a hexagonal convection cell in a fluid is distorted by an imposed uniform rotation 
of the entire system. The distortion plays an important role in the determination 
of the finite amplitude effects in the convecting fluid. We shall study this geometry 
of cellular convection as part of a more general investigation into the nature of 
cellular convection in a rotating fluid. 
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The constraint of rotation is, of course, only one of a large number of externally 
imposed constraints to which a fluid may be subjected. Yet a detailed knowledge 
of the constraining effect of rotation and of the finite-amplitude behaviour of the 
rotating fluid may provide an insight into the mechanism of a broad class of 
problems in which the system is constrained externally. 

I 

FIGTJRE 1. A perspective sketch of a hexagonal convection cell 
as it is distorted by an imposed rotation of the fluid. 

As a starting-point for this discussion, we have available several previous 
studies. The stability problem has been investigated theoretically by Chandra- 
sekhar (1953) and by Nakagawa & Frenzen (1955) (hereafter these papers will 
be referred to as I1 and I11 respectively), and experimentally by Nakagawa 
& Frenzen (1955) and by Fultz & Nakagawa (1955). Finite amplitude cellular 
convection in a non-rotating fluid has been considered by Malkus & Veronis 
(1958) (hereafter referred to as I). The questions which we may hope to answer 
in this paper may be posed more clearly in the light of these investigations. 

When a horizontally infinite layer of fluid is heated uniformly from below and 
cooled from above, the system is stable to infinitesimal disturbances for values of 
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the Rayleigh number A below a critical value A,. Here, A = ag/3,d4/~v, where g is 
the gravitational acceleration; a, v and K are respectively the coefficients of 
expansion, kinematic viscosity and thermometric diffusivity of the fluid; d is the 
depth of the fluid; and /3, = (TH - T,)/d, where TH and T, are respectively the 
temperatures at the bottom and top surfaces of the layer. When A 3 A,, the fluid is 
unstable and convective motions occur leading to a distortion of the mean 
(horizontally averaged) temperature field. Experimentally, convection is ob- 
served to set in as a fairly regular cellular pattern in the horizontal. 

The specific value of A, depends on the boundary conditions. In  the non- 
rotating system, A, is constant for a particular set of boundary conditions. In  the 
rotating fluid, the specific value of the critical Rayleigh number depends on the 
value of the Taylor number F2 = 4QW/v2  (where Q is the uniform angular 
velocity of the system) and on the value of the Prandtl number (T ( E v / K ) .  The 
general effect of the rotation is to increase A, and to decrease the horizontal scale 
of the cells. For large, but experimentally realizable, values of Fz, the value of A, 
may be as high as lo5 times the critical Rayleigh number corresponding to the 
non-rotating system. It has been noted both experimentally and theoretically 
(cf. I1 and 111) that for a range of values of the parimeters (r and F2, instability 
can arise as a time-periodic motion. In  the greater part of the range, this so-called 
' overstability ' occurs before steady convective instability. 

A number of interesting questions arise from the study of the stability problem. 
Although the horizontal scale of the cells diminishes with rotation, what simi- 
larities exist between the motions of the constrained and unconstrained systems 1 
What physical mechanism causes overstability to occur and to be preferred to 
steady convective instability Z Is  it possible that the initial instability occurs as 
convection, but that overstability can enter and become the preferred state of 
motion in finite amplitude? Is the reverse possible? 

As we have noted, the constraining effect of rotation manifests itself principally 
by making the system more stable, i.e. by increasing the value of A,. That the 
rotating system will behave differently from the non-rotating fluid in finite 
amplitude is indicated by the fact that viscosity plays a dual role here. In  addition 
to  its more familiar role of dissipating the kinetic energy of the h i d ,  the viscosity 
serves also as the energy releasing mechanism. The fluid particles are constrained 
by the rotation to move in the direction of the rotation vector a. Only through 
the presence of viscosity do they find it means for achieving cross-isobar flow 
through which potential energy is released. This dual role of viscosity as a function 
of rotation is no more evident than it is in the fact that (cf. 11) for sufficiently high 
rotation rates, a fluid confined by rigid boundaries becomes unstable for a value 
of A, lower than the A, corresponding to a fluid confined by free boundaries where 
viscous effects are smaller. In  the non-rotating case, the free boundary conditions 
have always led to lower A,. 

As a further guide to the finite amplitude study we turn to the analysis of finite 
amplitude convection in the non-rotating system (I). 

After the fluid has become unstable, the convective motions lead to a distortion 
of the mean temperature profile. When the Prandtl number is large, the amount 
of heat which is transported vertically by convection is determined principally by 
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this distortion of the mean temperature field. For cr < 1, the self-distortion of the 
cellular structure plays an important role in the determination of the vertical heat 
transport. Since the constraint of rotation adds to the distortion of the cellular 
structure, we can anticipate that in the present study the self-distortion of the 
cell will be more important in determining the heat transport. 

All close-packed cellular patterns (rectangles, hexagons, triangles and two- 
dimensional rolls) are mathematically possible in finite amplitude. A relative 
stability criterion was developed in I to determine which of the many possible 
steady solutions will actually be realized. When the system has vertical symmetry 
and free boundaries, square cells are the preferred pattern for v > 0.8, and limiting 
rectangles (one side becomes infinitely long) for v < 0.8. When a vertical asym- 
metry is present (e.g . free upper boundary, rigid lower boundary), hexagonal cells 
are preferred when h exceeds A, by a small amount. 

The qualitative results relating to symmetrical and asymmetrical systems 
ought not to be altered by the presence of rotation. However, is the preferred 
cellular pattern for a symmetric system a function of the rotation rate? What 
effect has overstability on the geometrical pattern of the flow? 

More general questions are the following. What is the mechanism through which 
the constraint manifests itself in the flow? Does the fluid organize itself so as to 
minimize the effects of the externally imposed constraint? Indeed, is it possible 
for the fluid to generate its own ' constraint' to offset the imposed one? 

1. Equations and boundary conditions 
This problem is one of a large class of convection problems in which the 

Boussinesq (1903) approximation may be applied. The density is considered to be 
constant everywhere in the equations except in the buoyant force term. The 
equations for the local conservation of heat, momentum and mass are then 

1 ?+ v .  Vv+ 2i2k x v = - - Vp + y!i?k+ vV2v, 
at Pm 

v . v  = 0, 
where the equation of state 

P = p m ( l - a p )  

has been used in the buoyancy term. In  these equations p is the deviation of the 
temperature from its mean value, pm is the mean density of fluid, v is the three- 
dimensional velocity field (u, w, w) in the directions (x, y, z )  respectively, t is the 
time, k is the unit vector in the vertical (2) direction, V2 is the three-dimensional 
Laplacean operator, p = rp" - gz, where @is the pressure, y = ag, and the remaining 
terms have been defined in the introduction. 

We consider an ensemble of systems with the given fixed boundary conditions. 
These systems will have arbitrary phases in time and horizontal space. An 
ensemble average denotes an average over these arbitrary phases, and, con- 
sequently, !P can be subdivided into a portion which is s function only of the 
vertical co-ordinate and a fluctuation which is a function of x, y, z and t .  
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Let 

where T(z) denotes the ensemble-average temperature. Thus, letting a bar over 
a quantity denote the ensemble-average, we have 

= T(z), T(z,  y, z, t )  = 0. 

The substitution of (1.5) into (1.1) yields 

aT a 2 T ( Z )  

at a22 
-- K--KV~T = flw-v.VT, 

where ,l? = - aT(z)/az is the negative vertical gradient of mean temperature. By 
taking an ensemble-average of (1.6), one gets 

which can be integrated once to yield 

K p +  W T  = H ,  

where H is the vertical heat flux in the fluid and is constant for an ensemble of 
systems with given fixed boundary conditions. Thus, taking a vertical average 

( = f Jod H d z )  yields 

where { I,,, denotes both an ensemble and a vertical average. 
From (1.8) and (1.9), we have 

B {wT), - wT 
z=l+ @rn 

(1.9) 

(1.10) 

Equation (1.10) provides a means for determining the distortion of the mean 
temperature field from the values of the fluctuation quantities w and T. 

Substituting (1.7) into (1.6) and making use of (1. lo), we have 
- 

(wT}, - WT 
K V ~ T  - B,w = - h, 

aT 
at K 
_- (1.11) 

where h = v . V T  - a(wT)/az represents the zero-average heat advection terms. 

to yield 
The pressure p (relative to hydrostatic pressure) can be eliminated from (1.2) 

ac (1.12) 
a 
at aZ - V 2 ~ + 2 f 2 - - ~ V : T  = vV4w+L, 

a 2  a 2  
-V?(v.Vw), V2 - -+- - ax2 ay2’  

and g = &/ax - au/ay is the vertical component of vorticity. From the first two 
equations of (1.2), an additional relation between 6 and w can be derived: 

--vvy-za- a(; aw = -2, 
at ax (1.13) 

a a 
ax aY 

where 2 = - (v. Vv) -- (v. Vu). The terms L and 2 appearing in (1.12) and 

(1.13) are both zero-average non-linear terms. 
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Because the subsequent analysis will be based on an expansion of each of the 
variables, it is convenient to work with the equations in dimensionless form. 
Thus, letting v = vv'/d, r = dr ' ,  V = d-lV', T = tcvT'/yd3, t = d%IK, u = v/K, 

one has (g - Vz) T - ghw = u2[{wT), - z] w - gh, (1.11 bis) 

(1.13 bis) 

where the primes have been dropped from the variables. Throughout the remainder 
of the work, unprimed quantities will denote dimensionless variables unless otherwise 
noted. In these equations F = 2Rd2/v is the square root of the Taylor number. 

The analysis will be pivoted about the linear stability solution and it is there- 
fore convenient to eliminate all but one of the variables in the linear operators. 
Elimination of T and 6 from the left-hand sides of ( l . l l ) ,  (1.12) and (1.13) gives 

+$7- --v2 _- _ _ -  
(:r ) (ii V 2 )  V:h+ ($-V2) ( k g - V 2 )  L. (1.14) 

Equations (1.3), ( l . l l ) ,  (1.13) and(l.14) arethebasicequationsofouranalysis. 
A perturbation method similar to that employedin I is used to derive approximate 
soh tions . 

Let w = €W0 + E2W1 + E3W2 + €4W3 + . . * ,', 
T = ET,+E~T,+E~T~+E~T~+ ..., 
u = EUO + E2U1 + €3U2 + E4U3 + . . . , (1.15) 

= €210 + (%'1+ E3V2 + E42)3 + . . . . I 
The parameter E must be identified with the amplitude. Since the value of h 
determines the amplitude, a relation between h and E must also be deduced. As 
in I, h is also expanded in terms of E :  thus 

h = h,+Ehl+E2h2+E3h3+E4h4+ ..., (1.16) 

where the hi are to be determined. 
If the expansions (1.15) and (1.16) are introduced into equations (1.3), (1.11)) 

(1.13) and (1. la),  and if the coefficients of each order of B are equated, a series of 
equations is derived involving the variables wi, q, ui and wi. We shall postpone 
writing the resulting relations explicitly until we come t o  the specific sections on 
finite-amplitude steady convection and finite-amplitude overstability. 

An additional equation, which we shall find useful, results from multiplying 
(1.2) by v and averaging. This yields in non-dimensional form 

a 
a7 

g{v. V%), + {wT), = - {+v. v>,. (1 .17 )  
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Equation (1.17) asserts that the rate of change of kinetic energy is equal to the 
rate of release of potential energy minus the rate of viscous dissipation of kinetic 
energy (the first term on the left is negative definite). In  our problems the right- 
hand side will vanish. 

Boundary conditions 

If the boundary at the top or the bottom surface is considered ‘free’, the 
conditions on the velocities are 

at the boundary. At rigid boundaries, the conditions are 

(1.18) 

(1.19) 

In the present investigation both boundaries are considered ‘free ’. Although this 
is an idealization, nevertheless i t  permits one to determine most of the qualitative 
features of the flow. The rigid boundary conditions lead to such a formidable 
computational problem (cf. I) that the present method of solution is practically 
useless. 

Thermally, the boundaries are considered perfect conductors. For air or water, 
most metal boundaries will by comparison be nearly perfect conductors. For a fluid 
such as mercury, silver or copper boundaries approximate the ideal boundary 
material. Hence, at the bounding surfaces, we take 

T = 0. (1.20) 

If we evaluate the basic equations (1.11) and (1.12) at a free boundary where - 

T = 0, then (1.12) becomes 
a4w 
~ = 0. 
a24  

(1.21) 

2. Stability problem 
The equations for the stability problem can be determined either by substi- 

tuting theexpansions (1.15) and (1.16)inequations (1.3), ( l . l l) ,  (1.13) and (1.14), 
and then taking only the first-order terms in E ,  or alternatively by simply 
neglecting all the non-linear terms in the equations. In  either case, the equations 
are 

(~-Vz)TO--uAOwO = 0, ( 2 . 1 ~ )  

(2.1 b )  

( 2 . 1 4  

where the subscript zero has been included in order to identify the variables with 
the stability problem. 
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Experimentally, convection is seen to occur as a close-packed cellular regime. 
This indicates that a useful analytical approach to the stability problem is to 
assume separability of horizontal and vertical dependence and to assume 
a periodic horizontal structure. These two simplifications are written rn 

w, = e@oTf(x, y) g ( 4 ,  W ( x ,  y> = - a2n2f(x, y), (2 .2)  

where a is the effective horizontal wave number and the time dependence is 
chosen as e*oT as is customary in linear stability theory. 

The stability problem can now be solved immediately (cf. 11) since the free 
boundary conditions on w, are satisfied by g(z )  = sin nnx. If 

w, = e@oTf(x, y )  sin nnz (2 .3)  

is substituted into (Z.lc), it is found that 

(a2 + n2) [p,  + n2(a2 + n2)] bole + n2(a2 + n2)I2 +Y2n2[p,  + n2(a2 + n2)] 

- a2h,[po/c + n2(a2 + n2)] = 0, 

hence, on rearrangement, * 

p:+ (2c+ l)n2(a2+n2)p~+[n4(a2+n2)2(e2+2c) +(Y2n2e-a2A0) c/(a2+n2)]po 

+ e2n6(a2 + + a2n2(Y2n2 - a2h,) = 0. 

(2.4) 

A. Steady convective instability 
If p ,  is real, marginal instability occurs when p ,  = 0, i.e. when 

A, - (a2 + n2)a +9-;n2 __ 

7T4 a 2  
- - -. 

3 

where 9: = T2/n4. From 

- -  - za6 + 3a4n2 - 126 - 9 2  1 n2 = 0, (2.6) 

we can find that value of a2, as a function of Y; and n2, which minimizes h0/n4. 
We note immediately from (2.6) and (2.5) that A,/++ 3(4Y2,n2)% and 

a2 -+ (&9-!n2)* asF2, --f 00. Thus, as the Taylor number increases, A, increases and 
the cellular diameter decreases. It is evident also that h,/n4 attains its minimum 
value when n = 1 (neglecting the trivial case n = 0 when there is no motion). 
A curve of h,/n4vs 9-; is plotted in figure 5.  

Sincer;  is inversely proportional to the square of the viscosity, the asymptotic 
expression, A,/n4 + 3(3Y2,n2)* asserts that both the critical Rayleigh number and 
the actual critical temperature difference TH - T, decreases with increasing 
viscosity. This destabilizing effect of viscosity plays an important role in the 
finite-amplitude behaviour of the fluid, and we shall refer to  it again later. 

The motions associated with the point of instability depend on the particular 
cellular pattern which is postulated. These motions will be presented here in some 
detail because a knowledge of them provides some insight into the finite-amplitude 
behaviour of the fluid. 

aa2 



Cellular convection with finite amplitude in a rotating fluid 409 

B. Geometry of the fluid motion 
The possible horizontal patterns for close-packed cells are limited to two- 
dimensional rolls, hexagons, triangles and rectangles. Though the f i s t  of these 
cannot occur in an experimental investigation, it represents the simplest type 
of motion and will be discussed first. 

Rolls. Let wo be independent of the y-co-ordinate. The solution (2.2) which 
satisfies the: symmetry condition awo/ax = 0 at the walls of the cell is 

wo = 2 cos nax sin nz, (2.7) 

where, for reasons which will appear later, w, has been normalized, i.e. (w& = 1. 
(The normalization does not affect the present discussion.) 

Y 
t Y' 

i ell 
C A C A C  

D B D B D  

FIGURE 2. (a) A top view of two-dimensional rolls in a non-rotating fluid. The arrows 
indicate the direction of motion of the fluid. ( b )  The same in a system rotating counter- 
clockwise. (c) A perspective view of fluid particle motions in a role when the fluid is 
rotated. 

, 
From equations (2.1), the temperature To and the velocity components uo, vo 

are 

2 g h ~  cos nax sin nz, 
To = n'qa2+ 1 )  

2 
a 

uo = - -sin nax cos nz, 

vo = '4 sin nw cos nz. 
a(az + 1) 

When TI = 0, we have vo = 0 and the fluid motion is in the x-direction only. In  
figure 2a a view of the top of a non-rotating fluid layer is shown. The fluid has 
maximum upward velocity along lines AB and maximum downward velocity 
along lines CD. 

When the system is rotated, the coriolis force introduces a velocity component 
parallel to the isobars (isotherms in this case), i.e. in the y-direction. Therefore, 
the streamlines are oriented at an oblique angle to the y-axis (figure 2 b ) .  

The wave-number 01 of the cell is a function of 9; as given by (2.6). The wave 
number corresponding to the oblique cell, i.e. in the direction of the orientation of 
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the cell, can be computed from (2.8). Let 8 be the angle from the x-axis to the 
streamline path as indicated in figure 2 b. Then 

The square of the wave-number of the oblique cell is given by 

(2.10) 

With (2.6), this expression reduces to 

012COS28 = a2(1/2a2) = Q. (2.11) 

In  other words, although the wavelength of the cell decreases with rotation, the 
wavelength of the cell measured in the direction of the orientation of the cell is the 
same as in the non-rotating case. 

D 

FIGURE 3 a. A top view of square cells in a non-rotating fluid. Points marked U are points 
of maximum upward velocity; those marked D are points of maximum downward velocity. 
The region within the dotted lines would be seen as a cell in an experiment. 

Square cells. From the analysis of the non-rotating system we anticipate that 
square cells will be the preferred form for a system with vertical symmetry. 
Paralleling the argument for rolls, we can write 

Tax nay 
wo = 2 42 cos -- cos __sin n z ,  

uo = - (2.12) 

42 42 

When TI = 0, both the horizontal and the vertical motions form a square 
pattern. A top view of the fluid is illustrated in figure 3a, where U and D define 
points of maximum upward and downward motions respectively. The cell is 
shown with fluid rising in the centre, but the pattern can equally as well be 
displaced by a half wavelength in the x- or y-direction to yield a cell with sinking 
at the centre. I n  actuality the region within the dotted lines is what one would 
see as a cell in an experiment. 
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When TI > 0, the coriolis force causes the fluid to turn as it moves toward or 
from the centre so that part of the flow is parallel to the isobars. The spiral curves 
in figure 3b correspond to the straight lines shown in figure 3a. As the spiral 
crosses the x- and y-axes, it coincides with the inverse logarithmic spiral 
r = a-1 exp {q 19/(a~ + l ) }  (in polar co-ordinates r ,  8), but the regions inter- 
mediate to the axes, it deviates from the logarithmic spiral. (The actual spiral is 
not equiangular, i.e. it does not cross all radial lines with the same angle at each 
traversal. The logarithmic spiral was used to construct the figure and to compute 
the half wavelength along the path.) By computing the length of the spiral, one 
can derive expression (2.11) for the horizontal ‘ wave-number ’ along the spiral. 
The wavelength measured along the distorted cellular boundary is again equal to 
that of the non-rotating case. 

Figure 3c  is a perspective sketch of a complete trajectory of a particle which 
travels from the centre of the cell to the edge and back again. The particle spirals 
upward and clockwise (for counterclockwise !2) from the centre of the cell, crosses 
to the corner near the top of the cell and spirals downward and counterclockwise. 
Halfway down it reverses its direction of rotation, spirals downward and clock- 
wise crosses back toward the middle of the cell, and begins a counterclockwise 
upward motion toward the centre. 

The reversal of rotation as a particle crosses the middle plane is due to the fact 
that at this point the horizontal divergence of the fluid changes sign. As the fluid 
moves outward, it is deflected to the right by the coriolis force and spirals in 
a clockwise manner. Converging fluid spirals counterclockwise when deflected to 
the right. 

The square cell shown in the diagram corresponds to the basic geometry of the 
vertical velocity. The actual cell is distorted by the rotation and is not reproduced 
here. 

Hexagonal cells. The preferred pattern for the vertical velocity is the hexagonal 
pattern when the boundary conditions provide a vertical asymmetry. Since most 
experimental observations of cells are made when the upper surface is free, 
hexagonal cells will ordinarily occur. 

The discussion parallels that for square cells. The analytical form as proposed 
by Christopherson (1940) is 

4 7  3 L  
2nx 2ny 

wo = :3 - (2 cos J3L cos 3L + cos - sin nz, (2.13a) 

where L = 4/(3a) is the length of one side of the regular hexagon. The remaining 
variables have the form 

WO, 
T W’AO 

O - n2(a2+ 1 )  
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FIGURE 3 b. A square cell in a rotating fluid. The particle motions from the centre outward 
follow the spiral curves. The dashed curves form the boundary of the square cell. 

FIGURE 3c .  A perspective sketch of a fluid particle motion in the square cell. 
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Figure 4a illustrates the particle motion at the top of a non-rotating-cell. 
Figure 4 b is a top view of a rotating cell and of the six adjacent cells. The dashed 
spirals form the upper boundary of the centre cell. Each centre is surrounded by 
six corners and each corner receives fluid from the three adjacent centres. 

FIGURE 4a. Top view of a non-rotating hexagonal cell. The fluid rises in the centre 
and spreads outward to the six comers where it descends. 

FIGURE 4 b .  A top view of seven rotating hexagonal cells. The fluid particles follow spiral 
paths from the centre toward the corners. The dashed lines form the boundaries of the 
centre cell. 

A perspective sketch of a fluid particle path in three dimensions is shown in 
figure 4c. Figure 1 illustrates the manner in which the cell is distorted by the 
rotation. 

The effective wave-number of the non-rotating cell is again equal to the wave- 
number measured along the spiral curve. 
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The three cases discussed here indicate that the wave-number measured along 
the curved path i, invariant. It is clear that such an invariance must be intimately 
coupled with a physical property of the fluid which is unaffected by the imposed 
constraint. The one property of the fluid which is not affected by a rotation about 
a vertical axis is the horizontal vorticity. We shall show here how the constancy 
of horizontal vorticity preserves the wave-number measured in the direction of 
flow for the simplest type of motion, viz. that of rolls. 

I 
I 
I 
I 
I 
I 

'-4 

FI~URE 4c. A perspective sketch of a fluid particle path 
which passes through the centre of the cell. 

Consider a rotation of the horizontal co-ordinates so that the z'-direction is 
measured along the direction of flow (figure 2 b ) .  Then the horizontal vorticity 
about the y-axis is given by au'laz - awlax', where the primes correspond to 
a measure of the quantities along the new axes. Since the horizontal vorticity is 
constant, we have 

((g-$)2]m = ((a,-*)') aZ ax 
= const., (2.14) 

where the middle expression corresponds to the non-rotating system, i.e. when 5' 
is parallel to z. From the equation of continuity, we have 

(2.15) 

Since w is normalized and since the z-distance is fixed, equation (2.15) yields 
a relation between the wave-number measured in the x (or 2') direction and the 
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amplitude of u (or u'). From (2.14) we then note that the wave-number must be 
the same in the two systems. When the vertical velocity is normalized the 
amplitudes of the horizontal velocities are equal. 

C. Overstability 

Though po must be real in the non-rotating system, p o  may be complex when 
9 - 2  > 0. The coeEcients of (2.4) are real; therefore, in general p ,  will have one 
real and two complex conjugate roots. These can be written in the form 

(Po -P') (Po - Pr - iPi) (Po - Pr + iP i )  = 0, 

or P~-(P'+2Pr)P~+(2PrP'+~q+P~)P)O-p'(P,q+Pg) = 0, 

where p', pi and pr  are real. 
For marginal stability pr = 0, and 

p;-p'pf+pqpo-p'pq = 0. (2.16) 

Hence, for marginal stability, the product of the coefficients of pf and po must 
equal the coefficient of p:. By (2.4) this condition becomes 

n2Y! 
(a+ 112 

= 2(a+ 1) 
n4 

which has a minimum when 8Ao/8a2 = 0, i.e. when 

(2.17) 

(2.18) 

Thus a2 -f 2 4 [ a 4 / ( a  + 1)]* and A0/n4 --f 2)3(a + 1) [a*/(a+ 1)]3 as q-+ co. 
(The above results do not obtain for a = 0, but this case is physically uninteresting 
and will not be considered.) 

The remainder of the discussion will be confined to the lowest eigenvalue, 
i.e. to the case n = 1. 

When po is imaginary, the coefficient of p o  in (2.16) is real and positive. From 
(2.4), we find that 

0- 
pq = n4(a2 + 1)s ( a 2  + 2a)  + - (9% - a2Ao) > 0, 

a2+ 1 
or, using (2.17), that 

9 - 2 a 2 (  1 - a) pq = -a2n4(a2+ 1)2+ - 
(a2+1) (1+a)  O .  

Therefore, a necessary condition for overstability is 

(2.19) 

(2.20) 

Eliminating 9-t from (2.18) and the equality of (2.20), we can find the value of a2 
at which overstability can just occur, i.e. when pi = 0. This value satisfies 

(2 - 3 ~ 2 )  012 + 3( 1 - 20.2) a4 - 3a2a2 - 1 = 0. (2.21) 
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When cr = 48, a2 = co. Therefore cr = 4% represents the (upper) limiting value of 
the Prandtl number for which overstability can occur." 

Equation (2.17) together with (2.18) determines the minimum value of A, for 
each pair of values of Ff and cr. The curves in figure 5 show the dependence 
of A,/n4 on F: for a number of values of cr. The curve C corresponds to steady 
convective instability . 

It is possible, of course, that the fluid may become unstable in a steady convec- 
tive manner and that overstability may occur in finite amplitude or that over- 
stability may occur first and convection be preferred in finite amplitude. Figure 6 
shows three divided regions in the (a,F:)-plane. In  region A overstability 
cannot arise because (2.20) cannot be satisfied. In  region B convection occurs 
first but overstability may be the preferred state in finite amplitude. 

105- 

104 - 

103- 
F 

100' I I I I I I I I I 

9: 
10-1 100 101 102 103 104 105 106 107 108 

FIGURE 5. The A,,/+ vs 9 - i  relations for marginal stability. The dashed curve corresponds to 
steady convective instability. The solid curves correspond to instability in the form of 
time-periodic motions. The numbers on the curves are the values of the Prandtl numbers. 

The curve between regions B and C marks the points at which overstability and 
convection occur simultaneously. The system will become overstable to in- 
finitesimal disturbances when cr and 9: have values in the region C. Here, 
however, convection may come in at finite amplitude. 

Why can overstability occur in the rotating systems and not when F = O ?  To 
answer this question we shall look into the energetics of the fluid. 

For the two-dimensional case the solution to (2.1 c )  is 

w, = 242cosp0rcos~axsinnx, (2.22) 

where pg is equal to p:  in (2.19). The remaining variables To, u,, wo can be deter- 
mined from equations (2.1) and are listed in Q 4. If these expressions are substi- 

* Nakagawa & Frenzen (111) show in figure 7 the value of A, for overstability (R: in 
their notation) in water ((T = 6). That overstability cannot occur for (T 3 4% is clear from 
the above argument. In addition, they derive the value A, = 2(u+ 1) a-2 (a2+ 1)3 when 

= 0. However, condition (2.20) is violated so that this result is also incorrect. 
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tuted into the power integral expression (1.17) (with the right-hand side equal to 
zero), and if we use (2.19) for p &  we have 

(2.23) 

where the left-hand side represents the rate of release of potential energy, {wT},, 
and the right-hand side the rate of dissipation of kinetic energy {v.V2v),. 
Equation (2.23) is equivalent to (2.17). Therefore the eigenvalue equation is 
a statement that a balance of the rate of viscous dissipation and the rate of 
release of potential energy is achieved by the fluid at the point of instability. 
The equivalent expression for the steady case is given by (2.5). 

U 

100 101 102 103 104 105 106 107 
9; 

FIGURE 6. The (u, T;)-plane is divided into three regions which are significant in the 
stability problem. In A instability occurs as steady convection. In B steady convective 
instability occurs first but overstabi1it)y is possible for higher A,. In C overstability occurs 
before steady convection. 

For fixed values of the convective heat transport, ( W T } ~ ,  and the rate of dissipa- 
tion of kinetic energy, a decrease of a in the overstable case reduces the effect of 
the external constraint F2. To compensate for the reduction of a it is necessary 
that A, be decreased. In  the steady system the energy balance at the point of 
instability is unaltered by a change of u. Therefore, in the overstable case, it is 
possible for the value of the Rayleigh number to  be smaller than the value 
corresponding to the steady regime because the effect of the constraint is smdl 
when the Prandtl number is small. 

From the stability problem, we have derived information concerning the onset 
of steady convective instability and of overstability. However, the amplitude of 
the motions for a given value of A, the energetics of the fluid, the preferred 

27 Fluid Mech. 6 
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motions for a given set of external parameters, and still other features are 
unknowns which can be determined only in a finite-amplitude study. Therefore, 
we shall now go on to  a study of finite-amplitude steady convection. 

3. Finiteamplitude steady convection 
Theequations whichgovernsteady convection aregiven by (1.3), ( l . l l ) ,  (1.13) 

and (1.14) with 8/37 = 0. Thus, the following equations are obtained by collecting 
terms in 8, e2 ande3 respectively: equations corresponding to e4, etc., can be found 
in the same way: 

aui av.  aw. 
ax ay ax 
-+J+L = 0 (i = 0,1,2,  ...). (3.4) 

Here the subscripts i , j  correspond to the order of the variables to be substituted 
d -  

into each expression: e.g. hij = vi . V q  - - (wi q). 
The method of solution is the same as the method used in the non-rotating 

problem (I). A brief outline of the method is given below.* 
The form of wo can be determined by inspection from (3.1). Expressions for 

To, uo and vo are derived from the normalized expression for w,, by means of 
equations (3.2), (3.3) and (3.4). The right-handside of the secondequationof (3.1) 
can then be computed directly since it is composed of zero-order functions only. 
However, two difficulties appear at this point. The inhomogeneous term in the w1 
equation will, in general, contain terms of the form of wo as well as the unknown 
parameter A,. In  solving for the particular solution for wl, one will obtain secular 
terms in addition to terms which are spatially periodic. In  addition, the homo- 
geneous solution of w1 will contain the form of wo with an arbitrary amplitude. 

* Note added in proof. A method for treating the finite-amplitude range has also been 
proposed by L. P. Gor’kov (1957). His method and that of Malkus & Veronis yield the 
same finite-amplitude results for A,. 

ax 
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Since A, multiplies a term of the form of w, in the inhomogeneous term, we can 
evaluate A, to cancel the remaining amplitudes of w,,. Secular terms are thereby 
eliminated and the assumed periodicity of the solution is maintained. Further- 
more, by specifying that E be the total amplitude of that part of w which contains 
w,, we can write (wwolm = E or { W ~ W , > ~  = 0 for i > 0, i.e. the homogeneous part of 
wi (i > 0) which has the form of w, has zero amplitude. The system of equations 
can now be solved for the wi, Ti, ui, vi and hi. We shall apply the method first to 
determine an approximate finite-amplitude solution for the two-dimensional rolls. 
Though this case is unrealistic, it is the only case which, with a reasonable amount 
of effort, can be carried beyond the second approximation. Because the roll is not 
truly descriptive of the actual physical system, we shall discuss certain qualitative 
features of this case only. Later, in the analysis for the square cell, additional 
observable features of the flow will be presented. 

(a) Rolls 

This is 
The solution to the stability problem is given by equations (2.7) and (2.8). 

(3.5) I 2aA, w, = 2cosnaxsinnz, T - cos nax sin nz, 

u, = --sinnwcosnz, v - 

O - n2(a2+ 1) 

a O - a(a2+ 1) 
2q sin Tax cos nz, 

2 

where the value of a corresponding to a given value of Y, is given by (2.6),  and A, 
is given by (2.5) 

The inhomogeneous term for w1 can be evaluated directly; thus 

cos 2nm, 
a a 437 

20, = - (v, . Vv,) - - (v,. Vu,) = - - 
ax a2+ 1 

1 a 
Lo, = 3; (v, . VU,) + - (v, . Vv,) - V2,(v0. VW,) = 0, a F a  a24 

a -  
aZ h,, = vo.VT0-- (wOT,) = 0. 

Therefore, 9w 1 = - n2a2A, w,. 
Now A, is evaluated so as to cancel the form of w, from the right-hand side. 

Since the only term containing the form of w, is A,V: w,, it  is necessary that A, = 0. 
Thus, A, = 0, W ,  = 0, T, = 0, U ,  = 0. (3.6) 

The second equation of (3.3) gives 

v 4 sin2nax. 
- zna3(a2+ 1) 

To solve for w2, we note that Lo, = L,, = h,, = h,, = Z,, = 0, and 

[3 cos 3nax - cos ;rrolx] sin nz, 820 ,  - Y 2  

az a2(a2+ 1) 
r--- - 

a2u2A0 

a2+ 1 
o-[(Wo~),  - a,] v;w, = - ___ cos nax(sin 3nz - sin nz), 

(3.7) 

A, 0: w, = - 2n2a2A, cos m x  sin nz. 
27-2 
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C&2U2AO 
cos 3nax sin T Z  - ~ cos nax sin 371.2. 

a,+ 1 (3 .8 )  
3272 

+ aZ(a2 + 1) 

The first term on the right-hand side has the form of w, and must vanish. Hence, 

The evaluation of A, provides the first finite-amplitude result. From the 
expression (1 .9)  for the heat transport, we can write 

(3.10) 

where w and T are non-dimensional, Expanding w and T as in (1.15), we 
have 

Therefore, to the e2 approximation for the convective heat transport, we get 

To the same approximation (1.16) becomes 

Hence, 

(3.13) 

(3.14) 

We can see from (3.14) that to the e2 approximation the convective heat 
transport varies inversely as A,. Table 1 contains values of the convective heat 
transport u{wT),/(A - A,) of rolls for various values of u and z. The range of u is 
restricted to  the values for which overstability can also occur. Not that A, and 
therefore a{wT},/(A - A,) are negative for small Prandtl numbers and positive for 
larger values. In  most of the range where A, is negative overstability will occur 
before steady convection. However, for sufficiently low rotation rates, over- 
stability cannot arise and the flow will be steady. 

Since e2 > 0, it is clear from (3 .13)  that negative A, implies that h < A,. 
According to  this analysis, which is pivoted about the linear stability problem, 
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the system will behave as follows. As A increases toward A,, heat is transported 
by pure conduction (figure 7). When h = A, convection will occur but now A can 
be decreased below A, and convection will be maintained. According to the e2 
approximation, one could decrease A indefinitely and convection would continue ; 
therefore, one must go to a higher approximation to determine when the curve 
begins to turn up again. 

U 

0.025 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0-687 
0.7 
0.8 

0- 1 

- 0.0239 
- 0'569 
- 6.01 

4.87 
2.99 
2-54 
2.34 
2-25 
2.23 
2.18 

0.5 

- 0'00702 
-0'117 
- 0.562 
- 1.94 
- 14.36 

7.39 
4.06 
3-26 
3.19 
2.80 

0- 

0.025 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.687 
0.7 
0- 8 

1 

- 0.00487 
- 0~0808 
- 0'365 
- 1.07 
- 3.24 
- 63.0 

7.10 
4.4 1 
4.23 
3.37 

5 

- 0.00377 
- 0.0619 
- 0.274 
- 0,735 
- 1.81 
- 5.60 
40.1 
6.77 
6-56 
4.40 

10 

- 0.00406 
- 0.0671 
- 0'0299 
- 0.827 
- 2.17 
- 8.68 

5.75 
5.37 
3.86 

13.7 

102 

- 0.00724 
- 0.122 
- 0.600 
- 2.16 
- 24-2 

6.51 
3.85 
3-16 
3.09 
2.74 

103 

- 0.0150 
- 0.270 
- 1.82 
29.6 
4-20 
3.01 
2.60 
2-43 
2.41 
2.29 

104 1 06 

- 0.0326 - 0.0715 
- 0.690 - 2.47 
77.6 3.66 
3.53 2-50 
2-64 2.25 
2.37 2-16 
2.25 2.11 
2.18 2.09 
2.16 2.08 
2.14 2.06 

1 06 
- 0.168 - 
11.2 
2.55 
2.23 
2.14 
2.10 
2.07 
2.04 
2.03 
2.02 

107 

- 0.382 
3.28 
2.21 
2.09 
2-05 
2.03 
2.02 
2.01 + 
2.01 
2.01 - 

UeA, 

nyaz + 1) A, 
for rolls. TULE 1. Values of ~ - ~- mJT1, - 

A - A, 

10s 

- 1.06 
2.44 
2.09 
2-04 
2.02 
2.01 + 
2.01 - 
2.01 - 
2.01 - 
2.00 + 

Experimentally, one wouId not observe the sequence of events described above. 
If a finite-amplitude perturbation were present, the system would become 
unstable at A, (figure 7), and the motions would grow very quickly from C to A ,  
i.e. until the fluid transported the amount of heat corresponding to point A .  
A further increase in h would be needed to increase H .  On the other hand, if no 
finite-amplitude disturbance were present, instability would occur at A,, but the 
motions would grow very rapidly with h = A, until the heat transport corre- 
sponded to point B. If the system were allowed to 'run down', i.e. if h were 
decreased from a value above A,, then the system would always follow the path 
BACO. 

The onset of instability as a finite-amplitude disturbance in the rotating 
system marks a definite point of departure from the results of the non-rotating 
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system. In  the latter case, convective heat transport is possible only for 
values of h > A,. Why does the rotating system respond so differently in finite 
amplitude'! What is the mechanism for the occurrence of finite amplitude 
instability? 

The answers to these questions can be found in equation (1.14). For the steady 
convective case, we have 

a2w az 
a 2 2  a2 

V6w +Y2- - hV;w = ~ [ { w T ) ,  - wT] V: w +F - - V;h - V2L. (3.15) 

FIGURE 7. The h v8 H curve when h, is negative. 

a a 
ax a Y  

The term 2 = -(v.vu)--(v.vzc) 

can be written in the form 

z = V1.V,~-o1.V,t  = v l . [ V l ~ - O I W ] ,  (3.16) 

where the subscript 1 corresponds to the horizontal vectors ando, is the horizontal 
vorticityvector. If the termY(aZ/ax) is taken to the left-hand side of the equation 
(3.15), the second term can be written (with the aid of (1.3)) 

(3.17) 
a 
a2 

9- - v, . { V I Y  - v1 < + o1 w>. 

The individual terms within the brackets correspond respectively to the hori- 
zontal transport of imposed vertical vorticity, the horizontal transport of local 
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vertical vorticity, and the vertical transport of horizontal vorticity. In  finite 
amplitude, therefore, the fluid can generate a local vorticity whose net effect is to 
decrease the role of the constraining first term in (3.17). When the viscosity is 
large, the generation of local vorticity is accompanied by strong viscous dissipa- 
tion so that the non-linear terms will stabilize the system. 

It is important to note that the possibility of a finite-amplitude instability is 
brought about by interactions of the zero-average non-linear terms which do not 
contribute per se to the distortion of the mean temperature profile. These terms 
play an increasingly important role as the Prandtl number diminishes. In  the 
non-rotating system, the heat transport curve of a fluid with small Prandtl 
number breaks away from the conduction line with a slope one-third greater than 
that of pure conduction, whereas when the Prandtl number is large the slope of 
the heat transport curve is twice the conduction slope. When an external con- 
straint is present, the heat convected by the fluid varies as a function of the 
constraint. 

When A, is positive, heat is transported by convection only when A is increased 
beyond A,. We shall discuss this case in some detail in a subsection on square cells. 

When A, c 0, it is necessary to consider the next approximation in order to find 
the point at which the h vs H curve turns upward. We can feel fairly confident that 
the e2 approximation is valid only in a very limited range, otherwise the A, H curve 
would cross the H axis, i.e. the fluid would transport a finite amount of heat in the 
absence of a temperature gradient. 

A, for rolls. Because of the vertical symmetry, hi = 0 for odd i. Hence, it is 
necessary to go to the e4 approximation to determine the higher-order effect on 
the heat transport. 

The equations governing the €4 approximation can be determined from 
equation (3.15) and from the expansions (1.15) and (1.16). The results only 
will be listed here: 

I w, = wz0 cos nax sin 3mx + wZ1 cos 3nax sin nz, 

aA~w,l cos 3nax sin m T2 = 2 0 ZO+ ,, (r"~ cos Tax sin 3m. + ____ 
CTA w 

7r (a +9) n2(9a2+ 1) 

- cos m x  sin m; 
c14(UZ + 1 ) 2  

A, = 0, 

A, 
No = k2(a2+ 1)' 

d N 0  3 9 7  where w20 = - ;rr4A 9 w 2 1 = -  
+a2(a2 + 1) B' 

A h B = ( 9 a 2 + 1 ) 3 + ~ - 9 ~ 2 - - 0  
774' 7r4 

A = ( L X ~ + ~ ) ~ + ~ Y : - L X ~ ~  

(3.18) 

(3.19) 
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Values of A, for mercury ((T = 0.025) and air ((T = 0.687) are given in 

We can now determine the range of validity of the e2 approximation. To the 
table 2 .  

€4 approximation, (1.16) becomes 

(3.20) 

where the positive sign in front of the radical has been chosen so that €2 -+ 0 as 
A -+ A,. Only when A; > 14A4(A - A,)/ is the e2 approximation valid. From the 
values of A, and A4 for air, A-A, = -gAi/A4 when A-A, = A, in the range 
0 < Yf < 0.1. As fl  increases, the limiting value of A - A, decreases to 0.03A0 at 
.Y: + 10 and then asymptotically approaches O-l6A,. For mercury the value of 
h - A, beyond which the A4 approximation is no longer valid is A, when Ff = 0, 
decreases to 0-005A0 when 9: = 0.5, rises to 0*14h, when 9: = lo4 and then 
steadily decreases to 0*09A, at 9: = los. Therefore, the e4 approximation is valid 
for a rather limited range of A. The A, curve describes the system accurately in 
a slightly smaller range of A. 

.F: A4 (air) A, (mercury) 9: A4 (aid A4 (mercury) 
0.1 0.0495 0.0971 103 - 0.164 0.956 x 
0.5 0.168 0-286 1 0 4  - 0.203 0-195 x 
1 0.230 0-354 105 - 0.229 0.410 x 
5 0-122 0-277 106 - 0.245 0.797 x 

10 0.042 0.196 107 - 0.253 0.168 x loV5 
102 -0*101 0.0499 108 - 0.257 0-280 x 

TABLE 2. A, for rolls. 

In  the non-rotating system (I), the e2 approximation for rolls is accurate for 
A -A, < A,. The more limited range of validity of A, for air in the rotating 
problem can be traced to the stability problem itself. The system becomes 
unstable to a disturbance with the form of the second mode, i.e. sin 2772, at a rela- 
tively smaller value of A. It was shown in 5 2 that (AO)n=2/(AO)n=1 3 (16)6 = 2.52 as 
JF -+ co, whereas in the non-rotating system the ratio equals 16. Since the finite- 
amplitude solution is based on the linear stability problem, it can describe the 
system only in the range in which the fluid is not unstable to other disturbances. 
This range is ten times smaller in the rotating case (for large Y:); therefore the 
corresponding approximation is accurate in an equally limited range. This 
reasoning does not apply to mercury where A, is negative. In  this case, the range 
of validity of the second-order approximation must be limited for the reason 
mentioned earlier. Nor can we apply the above reasoning to  account for the 
extremely small range of validity of the e2 approximation for air when 9-: i 10. 
As we shall see later, the fluid behaves quite differently for these smaller values 
of Y: than it does either for zero rotation or for higher rotation rates. 

From the expressions for the heat transport (3.10) and (3.11), we have to fourth 
order 

(3.21) 
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where the remaining terms in (3.11) vanish. Therefore, 

(3.22) 

For mercury, A, < 0 and A, > 0. Therefore, from (3.20), we note that the ampli- 
tude e2 increases as a result of the higher approximation. H increases with e2 so 
that the net effect of A, is to turn the h us H curve (figure 7) toward the right, i.e. 
toward point A .  In  order to determine the actual behaviour of the system as the 
h us H curve is turned upward again, it  would be necessary to consider the next 
approximation. 

The most important result which we have obtained from this study of finite- 
amplitude convection for rolls is that fluids with a sufficiently small Prandtl 
number can become unstable to a finite-amplitude disturbance at a lower value 
of A than A,. The non-linear vorticity generated by the finite-amplitude motions 
enables the fluidtoreduce the effect of the externalconstraint and thereby become 
unstable at lower values of the external parameters. 

( b )  A, for rectangular cells 
Using the method outlined earlier, we can determine A, for the rectangular cell. 

The detailed analysis is rather tedious and lengthy, so that only the results will be 
given. 

The stability solution is 

w, = 2 J2 cos nlx cos n m y  sin nz, To = 2 J2 VAT, cos nlx cos n m y  sin nz,, 

1 (3.23) 
J2 2 2/21 

cos nlx  sin n m y  + - sin nlx cos n m y  cos nz, 
uo = - a2 

J sin nlx cos n m y  - ~ 

where 2 4 2  is the normalization constant for w,,, N - " and 12+m2 = a,. 

Equations (2.5) and (2.6) again determine A, and a2 as functions of Fl. The first- 
order functions are 

O - n2(a2+ 1 )  

w1 = [al(llm) cos 27112 + a2(1, m) cos 2nmy] sin 2772, 

= [bl(l lm) cos 2nlx+b,(l,m) cos 2nmy]sain2nz, 1 

F~ sin 2nmg cos 2nz sin 2nlx + __ I u1 = - 
4m(m2 + 1) 

4 sin 2nmy - - _ ~ -  cos 2nlx sin 2nmy,  - 

2nma2(a2 + 1 )  2na4(a2+ 1) 
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A, = 0, 

8nSZ2m2aN0 32n5Z2m2(Z2 + 1) 
a4 

+ a2 
a,(Lm) = - 4n6[16(E2 + 1)3 +y;- E2hO/n4] 

426 

where 

Aoa, - 2naN0m2/a2 
4772(12 + 1) 

b,(Z,m) = a 3 

From these zero- and first-order functions and from (3. l),  an expression for A, can 
be obtained: 

a2No 7r 773 
A 2  = 2 - 2 a 2  

As a function of the parameters a, and the ratio Zlm, expression (3.25) for A, 
has a, triply infinite set of values. We shall restrict our attention here to the values 
of Y! which were considered in the subsection on rolls. Furthermore, we shall 
consider only two values of c, those corresponding to mercury (a  = 0.025) and 
air (a = 0.687). The ratio Zlm cannot be chosen arbitrarily, of course, for it is 
a parameter whose value is determined by the physics of the system. In order to 
decide which of the infinite number of values of Z/m is chosen by the fluid we turn 
now to the relative stability criterion which was developed in I. 

The relative stability criterion is the answer to the following question. If all of 
the mathematically possible solutions of a statistically steady physical system 
are known, which of the solutions is stable to disturbances which have the form 
of any of the other solutions? When all of the solutions are orthogonal to each 
other (as in the present case), the criterion takes a particularly simple form. The 
fluid chooses that solution which has the maximum value of {p2)m. From (1.10) in 
non-dimensional form, {p2)>, can be written 

(3.26) 

To the e2 approximation, (3.26) is equal to 

where (3.13) was used to derive the last equality. Since No is not a function of Zlm, 
the solution with maximum {p2}, at a given value of A is the solution with 
minimum A, or maximum heat transport. 

For this problem A, as given by (3.25) has a minimum at* Z/m = 00 for small fl 
and at" Elm = 1 for largeY;. The value of9-i at which the preferred shape crosses 
over from Z/m = 03 to Z/m = 1 depends upon the Prandtl number. Values of the 

* When Z/m = CO, the cellular geometry is that of limiting rectangles, i.e. the cells take 
the form of rolls in the limit. When l/m = 1, the cells are square. 
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convective heat transport for air and mercury are given in table 3 for square cells 
and for limiting rectangles. 

A result which is immediately evident upon comparing tables 1 and 3 is that the 
value of the heat transport for limiting rectangles differs markedly from the value 
for rolls. This difference was found also in the non-rotating case. Again the only 
conclusion which we can draw from these results is that one must use the limiting 
rectangle in the description of the two-dimensional case. Though neither the roll 
nor the limiting rectangle can satisfy lateral experimental boundary conditions, 
nevertheless the limiting rectangle can approximate long thin rectangular 
cells. 

Air 
b 

9; Square LR 
0.1 1.15 1.20 
0.6 0-971 0.961 
1 0.900 0.862 
5 0.896 0.782 

10 0.983 0.807 
loa 1.49 1-02 

Mercury 
& 
Square LR 

0.00623 0.0155 
0.00340 0.00455 
0.00275 0.00322 
0.00262 0.00244 
0.00329 0.00270 
0.0126 0.00481 

Air Mercury 

9: square LR' 

lo4 2.06 1.23 
lo5 2-05 1.29 
lo6 2.03 1.31 

10' 2.01 1.33 

103 1-95 1.11 

107 2.02 1.32 

Square LR 

- 0.0448 0.00993 
- 0.0361 0.0209 
- 0.0587 0.0445 
- 0.1 18 0.0924 
-0.249 0'184 
-0.608 0.342 

TABLE 3. Convective heat transport (a{wT},)/(h -A,) for steady square 
cells and limiting rectangles. 

An additional fact which emergesfrom a comparison of tables 1 and 3 is that for 
air the heat transport of squares exactly coincides with that of rolls when 9-: is 
large. Whether this is a chance coincidence or has some deeper significance has 
not been determined. Clearly the physical factors which enter into the determina- 
tion of A, are quite different in the two cases. 

A definite qualitative difference between the two-dimensional and three- 
dimensional cases is illustrated by the heat transport for mercury. For rolls 
a finite-amplitude instability can occur throughout the range of c considered, 
whereas limiting rectangles will not become unstable to finite-amplitude 
perturbations. 

We may note from table 3 that steady convective instability in mercury will 
set in the form of limiting rectangles for the range 0 < 9-i < 3. For higher values 
of c, convection occurs in the form of square cells. Since overstability can occur 
(though at a higher Rayleigh number) when9-t = 4, further discussion about the 
expected nature of convection must be postponed until the finite-amplitude 
effects of overstability are presented. 

One can predict the cellular structure of air over a much larger range of q. It 
is evident from table 3 that limiting rectangles will be preferred only when 
9-; < 0-5. Since overstability cannot set in until JT = 108, convection will take 
place in the form of steady square cells in the range 0.5 < 9; 6 108. 

It should be noted also that the very small amplitude of heat convection in 
mercury indicates that the heat transport curve in the H vs  h graph starts off 
practically tangent to the conduction line when instability occurs. 
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In  air the convective heat transport is much larger than it is in mercury. An 
interesting property for air exhibited by table 3 is that the convective heat 
transport for both the limiting rectangle and the square approach asymptotic 
values for large 9:. The asymptotic value for square cells is equal to the value 
for rolls. Furthermore, the non-rotating roll has precisely the same value 
(cr{wT),J(h - A,) = 2)  for all fluids. The value of the heat transport for limiting 
rectangles at large 9:, approaches the same value Q as it has in the non-rotating 
system. 

The results for large 9: must be reconsidered in the light of finite-amplitude 
overstable motions. However, for small values of the Taylor number ( < lo2 for 
air, Q 10 for mercury) it ought to be possible to check the above results experi- 
mentally. For instance, one ought to be able to see whether the limiting rectangle 
is actually the preferred cellular shape in air at  very low rotation rates. The slope 
of the heat transport vs h curve ought to be much steeper for low rotation rates 
than it is for zero rotation. Finally, the A, values for rolls in air are positive when 

is small. If this result bears even a qualitative significance to the realizable 
square or limiting rectangle, it would mean that for small9: the heat transport is 
smaller than the value given by the A, approximation. 

To summarize the results of this section, we have found that in a fluid with 
a small Prandtl number it is possible that a finite-amplitude instability can occur 
before the fluid becomes unstable to infinitesimal perturbations. In  this case, the 
finite-amplitude motions partially cancel the effect of the imposed constraint. For 
realizable cellular patterns in mercury this finite-amplitude instability will occur 
only in the range where overstability occurs first. It is, therefore, necessary to 
look into finite-amplitude overstable motions to determine whether the fluid can 
indeed be unstable to finite-amplitude disturbances. 

4. Finite-amplitude overstable motions 
In  the analysis of these motions, the method of solution outlinedin the previous 

section is inadequate. The difficulty which arises in the present case can be 
demonstrated by the following argument. 

Let wo = cosp,Tf(z,y)g(z) be the solution to ( 2 . 1 ~ ) .  Then u,, v0 and To can be 
determined from the remaining equations of (2.1). The inhomogeneous terms of 
the equations for wl, w2, etc., contain products of the lower-order functions, and 
the individual inhomogeneous terms are operated on by operators such as 
(a/&) - V2. As a result, terms of the type sinp,Tf(x,y) g(z) may appear as forcing 
terms but they do not contribute to the evaluation of the hi since they are ortho- 
gonal to the basic solution. Therefore, they remain as inhomogeneous terms and 
will give rise to secular terms in wl, w2, etc., because they satisfy the basic homo- 
geneous equation. One cannot avoid the difficulty by introducing an arbitrary 
phase since the same difficulty arises regardless of the phase of the basic solution, 
i.e. out of phase components are always generated. 

The present difficulty is not unique to the overstable problem. Indeed, one can 
conceive of examples in the steady problem in which the same problem arises. For 
example, in the basic roll solution, wo = cosmxg(z), there are instances when 
a generated inhomogeneous term has the form sin mxzg(z).  In  the examples of the 
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previous section these 'resonant ' terms always cancelled identically. However, 
it is possible that in some problems this fortuitous cancellation will not occur. 

To reduce the equations to  a soluble sequence once again we add an additional 
expansion. Specifically, let 

7 = $123, (4.1) 
a a a t  a 
a7 at a7 at 

so that - = - - = p -. We now expand p in powers of E as 

p =po+€p"31f2p2+ ..., (4.2) 

where the pi are to be determined. 

( l . l l ) ,  (1.13) and (1.14) take the form (where we give only the 
e2 terms (b) )  

If we add (4.1) and (4.2) to the expansions (1.15) and (1.16), the equations 
terms (a)  and 

( 4 . 3 ~ )  

(4.4b) 

etc. 

The continuity equation has the form (3.4). 
One can now proceed in the same manner as in the steady case. However, both 

sets of undetermined coefficients p i  and hi are used to eliminate the resonant 
terms whose forms are costf(z,y)g(z) and sintf(2,y) g(z). Using this method we 
find that the frequency p of the overstable oscillation changes with amplitude. It 
is clear that if out-of-phase resonant terms had been generated in the steady case, 
one would have had to expand CL in powers of e, i.e. the basic spatial wave number 
would have been a direct function of amplitude also. 



430 G. Veronis 

The algebra involved in the solution of the overstable case is so extremely 
tedious and lengthy that only the solution to the stability problem and the 
method of procedure will be outlined here. The expressions for wl, T,, etc., and for 
A,, p 2  will not be written explicitly. 

For the general rectangle, the solution of the stability problem is* 

I wo = 4 COB t cos nlx cos nmy sin nz, 

a z ( a 2  + 1 )  cos t + c(po/n2)  sin t 
p3n4 + c 2 ( a 2  + 1)2 

- sinnlx cosnmy 
a z ( a 2  + 1 )  cos t + c(po/n2)  sin t 

p3n4 + c 2 ( a 2  + 1)2 
- sinnlx cosnmy 

m 
a2 

- - cos t cos d x  sin rmy 
m 
a2 

- - cos t cos d x  sin rmy 

The inhomogeneous term in (4.3b) can be determined as a function of p, ,  A, and 
the remaining (known) parameters of the problem. We now have an expression 
with non-resonant forcing terms plus terms of the type 

[(apl + bA, + c) cos t + (dpl + eh, +f ) sin t] cos nlx cos nmy sin nz. 

The coefficients a, b, c, d, e andfare functions of previously determined parameters. 
One evaluates p1 and A, so that the coefficients of the resonant term vanish. It is 
then possible to go on and determine the higher order hi and pi in the same 
manner. 

As in the steady case, A, vanishes and p ,  = 0 here. Therefore, we must consider 
€2 terms to determine the first finite-amplitude effects. This evaluation was 
carried out for the case of the general rectangle and numerical results were 
computed for square cells and limiting rectangles in air and mercury. The results 
for the convection heat transport (as given by the e2 approximation (3.14)) for 
overstability are shown in table 4. 

A comparison of the values of the convective heat transport for air in tables 3 
and 4 indicates that heat is convected in air by steady cellular motions for 
fl < 106. However, for fl lo6, overstable oscillations with a cellular pattern 
of squares will become the preferred motion in Jinite amplitude even though 
instability occurs as steady convection. The preference for overstability is very 
slight, and experimentally one may expect either type of motion to occur. The 
sequence of preferred finite-amplitude motions in air is: steady convective 

* We can, of course, include arbitrary phases in the horizontal co-ordinate dependence 
end in the time dependence. However, no loss of generality is involved in writing the 
soiution as given by (4.6). The ensemble average is now an average over the horizontal 

space and time periods, i.e. __ 
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limiting rectangles for fl < 0.5, steady convective squares for 0.5 < < lo6, 
and overstable square cells for 9; 3 106. 

The cross-over from steady convection to overstability in mercury takes place 
at lower values of fl and is indeed much more definite. As we noted earlier, 
steady limiting rectangles occur for 9; < 3 and the system changes over to 

Mercury Air 
-7 & 

7: Square LR Square LR 
5 

10 
102 
103 
104 
105 

107 
106 

10s 

0.004 16 
0.00431 
0.0136 
0-0394 
0.0733 
0.107 
0.128 
0.138 
0.146 

0-0016 
0.00303 
0.0207 
0.0444 
0.0728 
0.105 
0.126 
0.136 
0.144 

- 
- 

- 
1.14 
1.66 
1.95 
2.07 
2.13 
2.16 

- 

- 

- 
1.31 
1.55 
1.59 
1-60 
1.61 
1.62 

TABLE 4. Convective heat transport for overstable square cells 
and limiting rectangles. 

1 LR(c) 

A-Ro 3 LR (0) 

dWTJm 2 Square (c) d WTJm 

4 Square (0 )  Air 

-1 0 1 2  3 4 5 6 7 8 

FIGURE 8. The convective heat transport values for air and mercuryas functions of “7;. The 
numbers on the portions of the curves lying between the dots mark the type of convective 
motions which occur in the specfied ranges of 5;. (c) corresponds to steady convective 
motions, (0 )  to overstable motions. 

steady square cells when 2 3. Overstable square cells are preferred when 
fl .I: 4.5 and remain as the preferred motion until F: + 20. However, at this 
point overstable limiting rectangles come in and are preferred to squares until 
fi + 7 x 103, when overstable square cells become preferred again. These results 
are summarized in figure 8. It should be noted that the preference for square 
cells over limiting rectangles at large Taylor numbers is based on a very small 
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difference in heat transport (1 to 2 %). It may therefore be very difficult to obtain 
any recognizable stable pattern unless one were to make the determination at 
larger h where higher order effects may conceivably solidify the preference. 

The convective heat transport for mercury is a small fraction of the conductive 
heat transport throughout the range of J9 considered, and one may expect the 
H vs A curve for h 2 A, to be practically tangent to the conduction line until higher 
order effects become important. In  air the heat transport curve breaks away 
quite sharply after instability and has about twice the slope of the pure conduc- 
tion line. 

y; 
5 

10 
10% 
103 
104 

1 0 7  

106 
1 06 

1 0 8  

Mercury 
w-7 

Square LR 
11.3 0.735 
2-30 1.80 
0.332 1.18 
6.28 x lo-' 0.263 
5-46 x 10-3 6.03 x 

2.13 x - 2.48 x 10-3 
- 1.93 x 10-3 
-9.91 x 10-4 
- 5.80 x 10-4 

8-61 x 10-3 
4.20 x 10-3 
1.80 x 10-3 

Air - 
Square LR 

- - 

- - 

- 2.14 1.33 
- 1.16 0.466 
- 0.558 0.160 
- 0.292 0.0616 
-0.138 0.0260 
- 0.0645 9-01 15 

TABLE 5. The coefficient p,h,,/p,h, for mercury and air. 

One of the most important results in the finite-amplitude study of overstable 
convection is that neither mercury nor air become unstable to finite-amplitude 
perturbations. Since the overstable oscillations in mercury take place at a much 
lower value of ho than does steady convective instability, the fact that the latter 
can become unstable to finite-amplitude perturbations will not be observed 
experimentally. 

The finite-amplitude effects on the frequency of the oscillation can be deter- 
mined by (4.2) which, to  the e2 approximation, has the form 

Using (3.13), equation (4.7) can be written 

"="el+ P A 0  ( 5- I)] 
7T2 7T Poh2 ho 

The coefficient p2h,/p0h2 is shown in table 5 for air and mercury. When the 
change in the frequency is negative, the correction decreases the convective heat 
transport (since A, is a function of p 2 ) .  One of the most surprising features 
exhibited by the change in the frequency is the magnitude of effect on the heat 
transport even when the change in the frequency is extremely small, as it is for 
higher rotation rates in mercury. Indeed, the value of A, in mercury without the 
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p ,  correction is negative for lo4 < < 10'. The change in frequency causes A, 
to become positive, and the system is stable to finite-amplitude perturbations. 
Thus, the non-linear change in frequency effectively stabilizes the system in this 
part of the range. Wherep, is positive, the non-linear change in frequency makes 
the system less stable. 

5. Summary and conclusions 
The most important conclusion in the stability investigation is that over- 

stability occurs because the fluid is thereby able to reduce the constraint of the 
imposed rotation. A second conclusion of considerable interest is that in steady 
convective instability the wavelength of the cell measured along the boundary 
(as it is distorted by the rotation) is equal to the wavelength of the non-rotating 
cell. Other results (which are explicitly or implicitly contained in Chandrasekhar's 
original investigation (1953)) are that overstability cannot occur in a fluid with 
a Prandtl number greater than ,/% because the rate of dissipation of kinetic energy 
always exceeds the rate of release of potential energy for larger v, and that 
overstability cannot occur for sufficiently low rotation rates because the tendency 
of the fluid to undo the external constraint is more than offset by the increased 
dissipation due to the time-dependent motions. 

For a range of the external parameters it is possible for the fluid, through 
finite-amplitude growth, to decrease the effect of the external constraint by 
generating a motion to counteract the effects of the imposed constraint. In  cases 
where this happens, the fluid may become unstable to finite-amplitude dis- 
turbances before it becomes unstable to infinitesimal perturbations. Neither air 
nor mercury, the two fluids considered here, will exhibit this finite-amplitude 
behaviour under laboratory conditions. 

More particular results in the finite-amplitude study are as follows. As the 
rotation rate is increased, the preferred cellular pattern for convection in air 
changes from steady limiting rectangles to steady squares to overstable squares 
(overstable square cells are preferred in finite amplitude even though the fluid 
first becomes unstable to steady convective motions). In  mercury the sequence of 
preferred cellular shapes changes with increasing Taylor numbers from steady 
limiting rectangles, to steady squares, to overstable squares, to overstable 
limiting rectangles, and finally, when fl  + lo6, to overstable squares again. The 
heat convected by mercury after instability is only a small fraction of the con- 
ducted heat, and consequently the H us h curve will not show the very sharp 
breaks which are exhibited in the non-rotating system. In air the convective heat 
transport is at least as large as the conductive transport for all rotation rates, and 
the H v s h  curve will show a sharp break a t  the point of instability. 

The frequency of the oscillations in overstable motions is a direct function of 
the amplitude. The change in frequency is too small to be noticeable in mercury 
wheny; > 50. However, even when small, the change in frequency has a marked 
effect on the heat transport. 

According to the present investigation the fluid reacts to the imposed con- 
straint by generating internal motions which counteract the external constraint. 
This result hints rather strongly that in general, when a fluid is subjected to 

28 Fluid Mech. 5 
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external constraints, it  may generate motions which tend to offset the constraint.* 
In  particular, in an electrically conducting fluid it is possible that a magnetic 
disturbance d l  grow so as to offset even further the constraint of the imposed 
rotation. In  such a case the preferred convective state would be one with a self- 
generated magnetic field. 

An additional suggested result with fairly broad application is the reason for 
the possible occurrence of a finite-amplitude instability. In  other problems, such 
as shear flow in a channel, a finite amplitude instability can also occur (Meksyn & 
Stuart 1951). The one feature which these problems have in common is the dual 
role of viscosity mentioned in the introduction. Viscosity acts as an energy- 
releasing mechanism as well as a dissipative mechanism. Since finite-amplitude 
growth is invariably accompanied by increased viscous dissipation, one would 
not expect a finite-amplitude instability to occur unless the fluid were able to 
release even more potential energy. The fact that viscosity can fulfil the role as the 
energy-releasing mechanism suggests that this dual role of viscosity is essential to 
finite-amplitude instability. 

It is interesting to note that the information concerning the appearance of 
a finite-amplitude instability is a consequence of an investigation which is 
pivoted about the linear stability problem. Application of the method described 
here to other problems, such as shear flow in a channel, may yield important 
results concerning the possible occurrence of finite-amplitude instability. One 
still feels, however, that the tools which we possess for treating finite-amplitude 
problems are woefully inadequate and that a more direct approach to non-linear 
stability problems should be sought. 

A note should be added about an alternative, integral, technique for deter- 
mining finite-amplitude effects. The method employed by Stuart (1958) and 
discussed in I is based on the power integral which can be derived by multiplying 
(1.11) by T and averaging. If quantities with the form of the stability solution 
are substituted into the power integral, one can then deduce the amplitude of 
w or T as a function of the external parameter A. However, in the present problem 
this type of evaluation would yield results which are misleading because the 
principal effects in the determination of amplitude are those which result from 
the zero-average non-linear terms. These terms do not appear in the power 
integral. 

Finally, what are the possible applications of these results to the fields of 
geophysics and astrophysics T (a )  The formal technique described here together 
with the relative stability criterion provides a means for determining the 

* The &st finite-amplitude result (A,) for rolls was computed for an electrically con- 
ducting fluid subjected to heating from below and cooling from above and with an imposed 
magnetic field. As Chandrasekhar (1952) has shown, the imposed magnetic field acts as 
a constraint on the system in much the same manner as does the rotation. In the finite- 
amplitude computation, /\, is negative for a restricted range of the parameter T / K ,  where 71 
is the magnetic diffusivity. The range lies within the range of values of T / K  within which 
overstability can occw. Therefore, the possibility of finite amplitude instability exists also 
for this case, although it cannot occur in experiments realizable in the laboratory. The 
parametric values correspond to those which can exist in stellar atmospheres aa Chan- 
drasekhar has shown. 
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preferred finite-amplitude configuration of any statistically steady system with 
a solved stability problem. The principal limitation of the method lies in the 
formidable computations which may be required to carry out the analysis. ( b )  The 
very important role of viscosity as the energy releasing mechanism in a gyro- 
scopically constrained system indicates that one ought to exercise some care in 
using such approximations as that of geostrophic flow in discussing the energetics 
of the fluid. ( c )  The ability of a fluid to react to externally imposed conditions may 
lead to a fuller understanding of the mechanistic behaviour of large-scale systems 
such as the atmosphere or the ocean. 

A number of the ideas which are presented in this paper were a direct) result of 
discussions with W. V. R. Malkus, and I wish to acknowledge his many valuable 
suggestions. The work was performed under the auspices of the Office of Naval 
Research and is Contribution no. 985 from the Woods Hole Oceanographic 
Institution. 
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