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Cellular convection with finite amplitude in a
rotating fluid

By G. VERONIS
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

(Received 3 July 1958)

When a rotating layer of fluid is heated uniformly from below and cooled from
above, the onset of instability is inhibited by the rotation. The first part of this
paper treats the stability problem as it was considered by Chandrasekhar (1953),
but with particular emphasis on the physical interpretation of the results. It is
shown that the time-dependent (overstable) motions occur because they can
reduce the stabilizing effect of rotation. It is also shown that the boundary of
a steady convection cell is distorted by the rotation in such a way that the wave-
length of the cell measured along the distorted boundary is equal to the wavelength
of the non-rotating cell. This conservation of cellular wavelength is traced to the
constancy of horizontal vorticity in the rotating and non-rotating systems. In the
finite-amplitude investigation the analysis, which is pivoted about the linear
stability problem, indicates that thefluid can become unstable tofinite-amplitude
disturbances before it becomes unstable to infinitesimal perturbations. The finite-
amplitude motions generate a non-linear vorticity which tends to counteract the
vorticity generated by the imposed constraint of rotation. Under experimental
conditions the two fluids, mercury and air, which are considered in this paper, will
not exhibit this finite amplitude instability. However, a fluid with a sufficiently
small Prandtl number will become unstable to finite-amplitude perturbations.
The special role of viscosity as an energy releasing mechanism in this problem and
in the Orr-Sommerfeld problem suggests that the occurrence of a finite-amplitude
instability depends on this dual role of viscosity (i.e. as an energy releasing
mechanism as well as the more familiar dissipative mechanism). The relative
stability criterion developed by Malkus & Veronis (1958) is used to determine the
preferred type of cellular motions which can occur in the fluid. This preferred
motion is a function of the Prandtl number and the Taylor number. In the case
of air it is shown that overstable square cells become preferred in finite amplitude,
even though steady convective motions occur at a lower Rayleigh number.

Introduction

The columnar structure in figure 1 represents the manner in which the boundary
of a hexagonal convection cellin a fluid is distorted by an imposed uniform rotation
of the entire system. The distortion plays an important role in the determination
of the finite amplitude effects in the convecting fluid. We shall study this geometry
of cellular convection as part of a more general investigation into the nature of

cellular convection in a rotating fluid.
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402 G. Veronis

The constraint of rotation is, of course, only one of a large number of externally
imposed constraints to which a fluid may be subjected. Yet a detailed knowledge
of the constraining effect of rotation and of the finite-amplitude behaviour of the
rotating fluid may provide an insight into the mechanism of a broad class of
problems in which the system is constrained externally.

Fraure 1. A perspective sketch of a hexagonal convection cell
asg it is distorted by an imposed rotation of the fluid.

As a starting-point for this discussion, we have available several previous
studies. The stability problem has been investigated theoretically by Chandra-
sekhar (1953) and by Nakagawa & Frenzen (1955) (hereafter these papers will
be referred to as II and III respectively), and experimentally by Nakagawa
& Frenzen (1955) and by Fultz & Nakagawa (1955). Finite amplitude cellular
convection in a non-rotating fluid has been considered by Malkus & Veronis
(1958) (hereafter referred to as I). The questions which we may hope to answer
in this paper may be posed more clearly in the light of these investigations.

When a horizontally infinite layer of fluid is heated uniformly from below and
cooled from above, the system is stable to infinitesimal disturbances for values of
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the Rayleigh number A below a critical value A,. Here, A = agf,,d*/kv, where ¢ is
the gravitational acceleration; «, » and k are respectively the coefficients of
expansion, kinematic viscosity and thermometric diffusivity of the fluid; d is the
depth of the fluid; and g,, = (Ty — T,)/d, where T and 7, are respectively the
temperatures at the bottom and top surfaces of the layer. When A > A, the fluid is
unstable and convective motions occur leading to a distortion of the mean
(horizontally averaged) temperature field. Experimentally, convection is ob-
served to set in as a fairly regular cellular pattern in the horizontal.

The specific value of A, depends on the boundary conditions. In the non-
rotating system, A, is constant for a particular set of boundary conditions. In the
rotating fluid, the specific value of the critical Rayleigh number depends on the
value of the Taylor number 72 = 4Q3%d*/v? (where Q is the uniform angular
velocity of the system) and on the value of the Prandtl number o (=v/«). The
general effect of the rotation is to increase A, and to decrease the horizontal scale
of the cells. For large, but experimentally realizable, values of 72, the value of A,
may be as high as 105 times the critical Rayleigh number corresponding to the
non-rotating system. It has been noted both experimentally and theoretically
(cf. IT and IIT) that for a range of values of the parameters ¢ and 7 2, instability
can arise as a time-periodic motion. In the greater part of the range, this so-called
‘overstability’ occurs before steady convective instability.

A number of interesting questions arise from the study of the stability problem.
Although the horizontal scale of the cells diminishes with rotation, what simi-
larities exist between the motions of the constrained and unconstrained systems?
What physical mechanism causes overstability to occur and to be preferred to
steady convective instability ¢ Is it possible that the initial instability occurs as
convection, but that overstability can enter and become the preferred state of
motion in finite amplitude? Is the reverse possible?

As we have noted, the constraining effect of rotation manifests itself principally
by making the system more stable, i.e. by increasing the value of A,. That the
rotating system will behave differently from the non-rotating fluid in finite
amplitude isindicated by the fact that viscosity plays a dual role here. In addition
to its more familiar role of dissipating the kinetic energy of the fluid, the viscosity
serves also as the energy releasing mechanism. The fluid particles are constrained
by the rotation to move in the direction of the rotation vector £. Only through
the presence of viscosity do they find a means for achieving cross-isobar flow
through which potential energy is released. This dual role of viscosity as a function
of rotation is no more evident than it is in the fact that (cf. IT) for sufficiently high
rotation rates, a fluid confined by rigid boundaries becomes unstable for a value
of A,lower than the A, corresponding to a fluid confined by free boundaries where
viscous effects are smaller. In the non-rotating case, the free boundary conditions
have always led to lower A,.

As a further guide to the finite amplitude study we turn to the analysis of finite
amplitude convection in the non-rotating system (I).

After the fluid has become unstable, the convective motions lead to a distortion
of the mean temperature profile. When the Prandtl number is large, the amount
of heat which is transported vertically by convection is determined principally by

26-2



404 G. Veronis

this distortion of the mean temperature field. For o < 1, the self-distortion of the
cellular structure plays an important role in the determination of the vertical heat
transport. Since the constraint of rotation adds to the distortion of the cellular
structure, we can anticipate that in the present study the self-distortion of the
cell will be more important in determining the heat transport.

All close-packed cellular patterns (rectangles, hexagons, triangles and two-
dimensional rolls) are mathematically possible in finite amplitude. A relative
stability criterion was developed in I to determine which of the many possible
steady solutions will actually be realized. When the system has vertical symmetry
and free boundaries, square cells are the preferred pattern for o > 0-8, and limiting
rectangles (one side becomes infinitely long) for o < 0-8. When a vertical asym-
metry is present (e.g. free upper boundary, rigid lower boundary), hexagonal cells
are preferred when A exceeds A, by a small amount.

The qualitative results relating to symmetrical and asymmetrical systems
ought not to be altered by the presence of rotation. However, is the preferred
cellular pattern for a symmetric system a function of the rotation rate? What
effect has overstability on the geometrical pattern of the flow?

More general questions are the following. What is the mechanism through which
the constraint manifests itself in the flow? Does the fluid organize itself so as to
minimize the effects of the externally imposed constraint? Indeed, is it possible
for the fluid to generate its own ‘constraint’ to offset the imposed one?

1. Equations and boundary conditions

This problem is one of a large class of convection problems in which the
Boussinesq (1903) approximation may be applied. The density is considered to be
constant everywhere in the equations except in the buoyant force term. The
equations for the local conservation of heat, momentum and mass are then

%—?—KWT =—v.VT, (1.1)
a—v+v.Vv+2Qk><v=-—1—\7p+~y2"’k+vV2v, (1.2)
ot P
V.v =0, (1.3)
where the equation of state
p = pu(l—aT) (1.4)

has been used in the buoyancy term. In these equations 7 is the deviation of the
temperature from its mean value, p,, is the mean density of fluid, v is the three-
dimensional velocity field («,v,w) in the directions (x, y, 2) respectively, ¢ is the
time, k is the unit vector in the vertical (z) direction, V2 is the three-dimensional
Laplacean operator, p = § — gz, where fiis the pressure, y = ag, and theremaining
terms have been defined in the introduction.

We consider an ensemble of systems with the given fixed boundary conditions.
These systems will have arbitrary phases in time and horizontal space. An
ensemble average denotes an average over these arbitrary phases, and, con-
sequently, 7' can be subdivided into a portion which is a function only of the
vertical co-ordinate and a fluctuation which is a function of z, y, z and ¢.
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Let T = 1)+ T(@,y, 1), (1.5)

where 7'(z) denotes the ensemble-average temperature. Thus, letting a bar over
a quantity denote the ensemble-average, we have

T =Tk, T(zyzt)=0.
The substitution of (1.5) into (1.1) yields

%—Z’—K%—Q—KVZT=ﬂw—V.VT, (1.8)
where § = —07(z)/0z is the negative vertical gradient of mean temperature. By
taking an ensemble-average of (1.6), one gets

—KEZ-BT;«E —= @T), (1.7)
which can be integrated once to yield
kB+wT = H, (L.8)

where H is the vertical heat flux in the fluid and is constant for an ensemble of
systems with given fixed boundary conditions. Thus, taking & vertical average

1 (4 .
(: Efo Hdz) yields Kfoy+{w T}, = H, (1.9)
where { },, denotes both an ensemble and a vertical average.
From (1.8) and (1.9), we have

L P s bl
Equation (1.10) provides a means for determining the distortion of the mean
temperature field from the values of the fluctuation quantities w and 7'.
Substituting (1.7) into (1.6) and making use of (1.10), we have
oT _ AwT},— wT _

V2T - =
5 KV — B w P

(1.10)

h, (1.11)

where b = v.VT — 8(wT)/oz represents the zero-average heat advection terms.
The pressure p (relative to hydrostatic pressure) can be eliminated from (1.2)
to yield 3 ¢

pr az—-'yV“l’T = wWiw+ L, (1.12)

where L—2 a(V Vu) 0 Vo) | — Vi(v.Vw) V2~£2— i
_8z[8_x ' +5g}(v' ) noenme 1~ax2+8y2’

and { = 0v/0x — 0u/dy is the vertical component of vorticity. ¥From the first two
equations of (1.2), an additional relation between { and w can be derived:

2 2 __ = —
PV - 20 = Z, (1.13)

where Z = a%(v.Vv)—%(v.Vu). The terms L and Z appearing in (1.12) and

(1.13) are both zero-average non-linear terms.
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Because the subsequent analysis will be based on an expansion of each of the
variables, it is convenient to work with the equations in dimensionless form.
Thus, letting v =vv'/d, r =dr’, V=d V', T = xoT'[yd3, t =d*[k, o = V]K,

one has ) —
(—57—_——V2) T—oAw = o*{wT},, ~wllw—oh, (1.11 bis)
10 ) oo of 1 om .
(EE"V)V‘”‘?&"E“T“L’ (1.12 bis)
128 . ow .
(Eﬁ%“v)g“‘q_a_z“-z’ (1.13bis)

where the primes have been dropped from the variables. Throughout the remainder
of the work, unprimed quantities will denote dimensionless variables unless otherwise
noted. In these equations I~ = 2Qd?/v is the square root of the Taylor number.
The analysis will be pivoted about the linear stability solution and it is there-
fore convenient to eliminate all but one of the variables in the linear operators.
Elimination of 7' and £ from the left-hand sides of (1.11), (1.12} and (1.13) gives

1 a 2 2 a 2 2, 2 2 2 azw_ 1 a 2 2
(EE‘V) (aTV)V“’” (ar‘V)@? (;5;'V)W1w
— 1 a 2 2
_ g(&_g_v ) [T}~ 0T Vi
8 w\9Z (120 N (0 oo\ (12
+,7'(8_T—V)g—(}E—V)V1k+(E—V)(;$—V L. (1.14)

Equations (1.3), (1.11), (1.13) and (1.14) are the basic equations of our analysis.
A perturbation method similar to that employed in I is used to derive approximate
solutions.
Let w = €Wy + 2wy + Wy + 2wy + ...,
T =ely+eT + 8T+ et Ty + ...,

(1.15)
U = euy+ €%u, + 3uy +etug+ ...,

v = evy+ €2 + e3v, +etvg+ ...

The parameter ¢ must be identified with the amplitude. Since the value of A
determines the amplitude, a relation between A and e must also be deduced. As
in I, A is also expanded in terms of e: thus

A= Ayterd +eBA+ A+ + .., (1.18)

where the A; are to be determined.

If the expansions (1.15) and (1.16) are introduced into equations (1.3), (1.11),
(1.18) and (1.14), and if the coefficients of each order of ¢ are equated, a series of
equations is derived involving the variables w;, T}, u; and v;. We shall postpone
writing the resulting relations explicitly until we come to the specific sections on
finite-amplitude steady convection and finite-amplitude overstability.

An additional equation, which we shall find useful, results from multiplying
(1.2) by v and averaging. This yields in non-dimensional form

o{v.V2v}, + (wT},, = e-%{%v.v},,,. (1.17)
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Equation (1.17) asserts that the rate of change of kinetic energy is equal to the
rate of release of potential energy minus the rate of viscous dissipation of kinetic
energy (the first term on the left is negative definite). In our problems the right-
hand side will vanish.

Boundary conditions

If the boundary at the top or the bottom surface is considered ‘free’, the

conditions on the velocities are

2
o _ou_w (1.18)

V=0 %t e

at the boundary. At rigid boundaries, the conditions are

_ow_
e

In the present investigation both boundaries are considered ‘free’. Although this
is an idealization, nevertheless it permits one to determine most of the qualitative
features of the flow. The rigid boundary conditions lead to such a formidable
computational problem (cf. I) that the present method of solution is practically
useless.

Thermally, the boundaries are considered perfect conductors. For air or water,
most metal boundaries will by comparison benearly perfect conductors. For a fluid
such as mercury, silver or copper boundaries approximate the ideal boundary
material. Hence, at the bounding surfaces, we take

T =o0. (1.20)

If we evaluate the basic equations (1.11) and (1.12) at a free boundary where
T = 0, then (1.12) becomes

w=0, u=v 0. (1.19)

tw

=2=0. (1.21)

2. Stability problem

The equations for the stability problem can be determined either by substi-
tuting the expansions (1.15) and (1.16) in equations (1.3), (1.11), (1.13) and (1.14),
and then taking only the first-order terms in ¢, or alternatively by simply

neglecting all the non-linear terms in the equations. In either case, the equations
are

(a%-—Vz) To—aAqw, =0, (2.1a)
10 ow,
((—J_'E'_VZ) go"'eg--a—‘zo = 0, (2.]_b)

19 wa\* (2 _ve\ ey 4720 _w2) P%_ (L2 o 2oy =

Ouy  Ovy  Owy

—a;:-'l'a—y +-5z—— 0, (2.14)
where the subscript zero has been included in order to identify the variables with
the stability problem.
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Experimentally, convection is seen to occur as a close-packed cellular regime.
This indicates that a useful analytical approach to the stability problem is to
assume separability of horizontal and vertical dependence and to assume
a periodic horizontal structure. These two simplifications are written as

wy = ef(2,y)g(z), Vif(z,y) = —o*n¥f(z,y), (2.2)

where « is the effective horizontal wave number and the time dependence is
chosen as ePo” as is customary in linear stability theory.

The stability problem can now be solved immediately (cf. II) since the free
boundary conditions on w, are satisfied by g(z) = sinnzz. If

w, = ePf(x, y)sinnmz (2.3)
is substituted into (2.1¢), it is found that

(0 1) [Py + (@2 + )] [P0 + (e + ¥) - T Py (e +- )]
—a®Ag[po/0 + mB(a? +n?)] = 0,
hence, on rearrangement,

Py + (20 + 1) m¥(o® + n?) pf + [m4(o® + 72)? (02 + 20) + (T *n%0 — aPA,) o/ (a® + n®)] po

+ o278 (a? 4 n2)® + 02T *n? — aPAd,) = 0.

(2.4)
A. Steady convective instability
If p, is real, marginal instability occurs when p, = 0, i.e. when
Ay (24 n2B+ T §n?
T B (2.5)
where 7% = .7 2/r*. From
R _ 208 1 3atn2 —nS — Tin = 0 2.6
g2 = 200 +3aint—nf T int = 0, (2.6)

we can find that value of 2, as a function of 7% and 2, which minimizes A,/

We note immediately from (2.6) and (2.5) that Ay/mt— 3(373n%)t and
a? > (37 n?)t as 7 2 - co0. Thus, as the Taylor number increases, A, increases and
the cellular diameter decreases. It is evident also that Ay/#?* attains its minimum
value when n = 1 (neglecting the trivial case n = 0 when there is no motion).
A curve of A,/mtvs 7% is plotted in figure 5.

Since J %isinversely proportional to the square of the viscosity, the asymptotic
expression, A,/m* - 3(37 n?)% asserts that both the critical Rayleigh number and
the actual critical temperature difference Ty — 7|, decreases with increasing
viscosity. This destabilizing effect of viscosity plays an important role in the
finite-amplitude behaviour of the fluid, and we shall refer to it again later.

The motions associated with the point of instability depend on the particular
cellular pattern which is postulated. These motions will be presented here in some
detail because a knowledge of them provides some insight into the finite-amplitude
behaviour of the fluid.
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B. Geometry of the flurd motion

The possible horizontal patterns for close-packed cells are limited to two-
dimensional rolls, hexagons, triangles and rectangles. Though the first of these
cannot occur in an experimental investigation, it represents the simplest type
of motion and will be discussed first.

Rolls. Let w, be independent of the y-co-ordinate. The solution (2.2) which
satisfies the symmetry condition dwy/ox = 0 at the walls of the cell is

w, = 2cosmaxsinnz, (29

where, for reasons which will appear later, w, has been normalized, i.e. {w}},, = 1.
(The normalization does not affect the present discussion.)

T,
y
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Ficure 2. (a) A top view of two-dimensional rolls in a non-rotating fluid. The arrows
indicate the direction of motion of the fluid. (b) The same in a system rotating counter-
clockwise. (¢) A perspective view of fluid particle motions in a role when the fluid is
rotated.

t

From equations (2.1), the temperature T\, and the velocity components u,, v,
are

, 204, . 2 .
V= =5 g o COSTATSINAZ, Uy = ——sinTarcos Nz,
a2+ 1) a
29, .
Vg = —g—SinTAX COS T, (2.8)
afa?+1)

When Z, = 0, we have v, = 0 and the fluid motion is in the z-direction only. In
figure 2a a view of the top of a non-rotating fluid layer is shown. The fluid has
maximum upward velocity along lines 4B and maximum downward velocity
along lines CD.

When the system is rotated, the coriolis force introduces a velocity component
parallel to the isobars (isotherms in this case), i.e. in the y-direction. Therefore,
the streamlines are oriented at an oblique angle to the y-axis (figure 25).

The wave-number « of the cell is a function of 72 as given by (2.6). The wave
number corresponding to the oblique cell, i.e. in the direction of the orientation of
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the cell, can be computed from (2.8). Let 4 be the angle from the z-axis to the
streamline path as indicated in figure 25. Then

6 = tan-1 (”—0) - —tan—l( 71 ) (2.9)

Uy, at+1

The square of the wave-number of the oblique cell is given by

a2(a2 + 1)2
a200826 = mﬁ. (2.10)

With (2.6), this expression reduces to
a?cos?d = a?(1/20%) = 4. (2.11)
In other words, although the wavelength of the cell decreases with rotation, the

wavelength of the cell measured in the direction of the orientation of the cell is the
same as in the non-rotating case.
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FI1GURE 3a. A top view of square cells in a non-rotating fluid. Points marked U are points
of maximum upward velocity ; those marked D are points of maximum downward velocity.
The region within the dotted lines would be seen as a cell in an experiment.

Square cells. From the analysis of the non-rotating system we anticipate that
square cells will be the preferred form for a system with vertical symmetry.
Paralleling the argument for rolls, we can write

mxx oA

Wy = 24/2 cos — 72 J2 T
27, mow . M y 2 . mox y]

[———a2+ ) COS —— ‘/2 Tty sin —— NE cos COS 712, [ (2.12)

2 08 7Y sin mz, To=

Uy = —

vy = _2 cos sin?% 4 2'/1 sin 7% cog T ]coswz.
S ey i o8

When Z; = 0, both the horizontal and the vertical motions form a square
pattern. A top view of the fluid is illustrated in figure 3a, where U and D define
points of maximum upward and downward motions respectively. The cell is
shown with fluid rising in the centre, but the pattern can equally as well be
displaced by a half wavelength in the z- or y-direction to yield a cell with sinking
at the centre. In actuality the region within the dotted lines is what one would
see as a cell in an experiment.
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When J; > 0, the coriolis force causes the fluid to turn as it moves toward or
from the centre so that part of the flow is parallel to the isobars. The spiral curves
in figure 3b correspond to the straight lines shown in figure 3a. As the spiral
crosses the z- and y-axes, it coincides with the inverse logarithmic spiral
r=oalexp{7;0/(a®+1)} (in polar co-ordinates r,d), but the regions inter-
mediate to the axes, it deviates from the logarithmic spiral. (The actual spiral is
not equiangular, i.e. it does not cross all radial lines with the same angle at each
traversal. The logarithmic spiral was used to construct the figure and to compute
the half wavelength along the path.) By computing the length of the spiral, one
can derive expression (2.11) for the horizontal ‘wave-number’ along the spiral.
The wavelength measured along the distorted cellular boundary is again equal to
that of the non-rotating case.

Figure 3¢ is a perspective sketch of a complete trajectory of a particle which
travels from the centre of the cell to the edge and back again. The particle spirals
upward and clockwise (for counterclockwise Q) from the centre of the cell, crosses
to the corner near the top of the cell and spirals downward and counterclockwise.
Halfway down it reverses its direction of rotation, spirals downward and clock-
wise crosses back toward the middle of the cell, and begins a counterclockwise
upward motion toward the centre.

The reversal of rotation as a particle crosses the middle plane is due to the fact
that at this point the horizontal divergence of the fluid changes sign. As the fluid
moves outward, it is deflected to the right by the coriolis force and spirals in
a clockwise manner. Converging fluid spirals counterclockwise when deflected to
the right.

The square cell shown in the diagram corresponds to the basic geometry of the
vertical velocity. The actual cell is distorted by the rotation and is not reproduced
here.

Hexagonal cells. The preferred pattern for the vertical velocity is the hexagonal
pattern when the boundary conditions provide a vertical asymmetry. Since most
experimental observations of cells are made when the upper surface is free,
hexagonal cells will ordinarily occur.

The discussion parallels that for square cells. The analytical form as proposed
by Christopherson (1940) is

2
{2 cos 2% -y -1 cos ﬂy} sin 77z, (2.13a)

2
BNE J3L® 3L 3L

where L = 4/(3«) is the length of one side of the regular hexagon. The remaining
variables have the form

L T
0 m2(a?+ 1) 0
_ [BL_. 2mx 2my  .J3LJ; 2nx . 2my 4y
Uy = — [E—SIHJECOSS_L+2(OL2+ 1 (cos\/3L EY 1n?L~ cos7z,; (2.13b6)
_ [ 3Ly, sin 2mx 27ry _43L 2nx . 2my y)
Vo = [2((Z,2+ 1 ,\/3L L ( 0S8 ;/3—1.1' lnﬁ—i-mn?L— CO8 7TZ.
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FicUurE 3b. A square cell in a rotating fluid. The particle motions from the centre outward
follow the spiral curves. The dashed curves form the boundary of the square cell.

Ficure 3c. A perspective sketch of a fluid particle motion in the square cell.
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Figure 4a illustrates the particle motion at the top of a non-rotating-cell.
Figure 45 is a top view of a rotating cell and of the six adjacent cells. The dashed
spirals form the upper boundary of the centre cell. Each centre is surrounded by
gix corners and each corner receives fluid from the three adjacent centres.

Ficure 4a. Top view of a non-rotating hexagonal cell. The fluid rises in the centre
and spreads outward to the six corners where it descends.

FIGURE 4b. A top view of seven rotating hexagonal cells. The fluid particles follow spiral
paths from the centre toward the corners. The dashed lines form the boundaries of the

centre cell.

A perspective sketch of a fluid particle path in three dimensions is shown in
figure 4¢. Figure 1 illustrates the manner in which the cell is distorted by the

rotation.
The effective wave-number of the non-rotating cell is again equal to the wave-

number measured along the spiral curve.
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The three cases discussed here indicate that the wave-number measured along
the curved pathisinvariant. Itis clear that such an invariance must be intimately
coupled with a physical property of the fluid which is unaffected by the imposed
constraint. The one property of the fluid which is not affected by a rotation about
a vertical axis is the horizontal vorticity. We shall show here how the constancy
of horizontal vorticity preserves the wave-number measured in the direction of
flow for the simplest type of motion, viz. that of rolls.

FI1GURE 4¢. A perspective sketch of a fluid particle path
which passes through the centre of the cell.

Consider a rotation of the horizontal co-ordinates so that the «’-direction is
measured along the direction of flow (figure 2b). Then the horizontal vorticity
about the y-axis is given by ou’[oz—0w/[ox’, where the primes correspond to
a measure of the quantities along the new axes. Since the horizontal vorticity is

constant, we have
ou' ow)\? ou ow\?
{(‘a?‘ﬁx") }m = {(5;‘@) },,, = const., (2.14)

where the middle expression corresponds to the non-rotating system, i.e. when z’
is parallel to . From the equation of continuity, we have

ou’ ow ou ow
é‘;;+§z—=0, %"}'E—O- (215)
Since w is normalized and since the z-distance is fixed, equation (2.15) yields

a relation between the wave-number measured in the z (or 2’) direction and the
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amplitude of « (or %’). From (2.14) we then note that the wave-number must be
the same in the two systems. When the vertical velocity is normalized the
amplitudes of the horizontal velocities are equal.

C. Overstability

Though p, must be real in the non-rotating system, p, may be complex when
F2 > 0. The coefficients of (2.4) are real; therefore, in general p, will have one
real and two complex conjugate roots. These can be written in the form

(Po—2") (Po—Pr—10;) (Po— P, +1p;) = 0,
or P3— (P’ +2p,) P&+ (20,0" + P2+ P}) po— P’ (P2 +12) = 0,

where p’, p; and p, are real.
For marginal stability p, = 0, and

P3—p'P§+Dipo— PP} = 0. (2.16)

Hence, for marginal stability, the product of the coefficients of p2 and p, must
equal the coefficient of p3. By (2.4) this condition becomes

o2

(o +n?)3 + n:7 3
A o+1)?
772 =2(c+1) ;2 , (2.17)
which has a minimum when 0A,/0x? = 0, i.e. when
2
245+ 3atn? = nd+ (f:_—ﬁnzﬁ'f. (2.18)

Thus a? - 2-¥onT, /(o + 1)} and Aj/mt - 283(0 + 1) [onT, /(0 + 1)1} as T E — o0.
(The above results do not obtain for o = 0, but this case is physically uninteresting
and will not be considered.)

The remainder of the discussion will be confined to the lowest eigenvalue,

i.e. to the case n = 1.
When p, is imaginary, the coefficient of p, in (2.16) is real and positive. From
(2.4), we find that

g
Ph = A+ 1 (074 20) + 5 (Thr —adg) > O,

or, using (2.17), that

T 0¥l —o0)
ph = — ot 1+ SO 1§ s > (2.19)
Therefore, a necessary condition for overstability is
o+1
2 > 2 3, .
12 — @+ (2.20)

Eliminating 7% from (2.18) and the equality of (2.20), we can find the value of «?
at which overstability can just occur, i.e. when p; = 0. This value satisfies

(2—30%) a?+3(1 —20%) at—30%a?—1 = 0. (2.21)
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When o = /2, a* = 0. Therefore o = /2 represents the (upper) limiting value of
the Prandtl number for which overstability can oceur.*

Equation (2.17) together with (2.18) determines the minimum value of A, for
each pair of values of 7% and o. The curves in figure 5 show the dependence
of Ay/m* on J% for a number of values of o. The curve C corresponds to steady
convective instability.

It is possible, of course, that the fluid may become unstable in a steady convee-
tive manner and that overstability may occur in finite amplitude or that over-
stability may occur first and convection be preferred in finite amplitude. Figure 6
shows three divided regions in the (0,7 %)-plane. In region 4 overstability
cannot arise because (2.20) cannot be satisfied. In region B convection occurs
first but overstability may be the preferred state in finite amplitude.

105
104
103

«
=
5
102

101

100 1 ! 1 1 L 1 1 ] I
101 10 100 102 103 104 105 106 107 108
71

Froure 5. The Ay/m vs 7 1 relations for marginal stability. The dashed curve corresponds to
steady convective instability. The solid curves correspond to instability in the form of
time-periodic motions. The numbers on the curves are the values of the Prandtl numbers.

The curve between regions B and C marks the points at which overstability and
convection occur simultaneously. The system will become overstable to in-
finitesimal disturbances when o and 7% have values in the region C. Here,
however, convection may come in at finite amplitude.

Why can overstability occur in the rotating systems and not when .7 = 0% To
answer this question we shall look into the energetics of the fluid.

For the two-dimensional case the solution to (2.1¢) is

wy = 24/2 cos p,T cos maxsin 7z, (2.22)

where p is equal to p} in (2.19). The remaining variables 7', u,, v, can be deter-
mined from equations (2.1) and are listed in §4. If these expressions are substi-

* Nakagawa & Frenzen (III) show in figure 7 the value of A, for overstability (B¢ in
their notation) in water (o = 6). That overstability cannot occur for o > /% is clear from
the above argument. In addition, they derive the value A, = 2(g+1) a~% (a®+ 1) when

2 = 0. However, condition (2.20) is violated so that this result is also incorrect.
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tuted into the power integral expression (1.17) (with the right-hand side equal to
zero), and if we use (2.19) for p2, we have

Ay/mt 9 a?
2 T2 B
1 2 2 o 1
(1+0) [(a +1) +(g+1)2(a2+1)]

(2.23)

where the left-hand side represents the rate of release of potential energy, {wT},,,
and the right-hand side the rate of dissipation of kinetic energy {v.V3v},.
Equation (2.23) is equivalent to (2.17). Therefore the eigenvalue equation is
a statement that a balance of the rate of viscous dissipation and the rate of
release of potential energy is achieved by the fluid at the point of instability.
The equivalent expression for the steady case is given by (2.5).

08
o7
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0 L1 ) 1
100 101 102 103 104 105 106 107

J1

Ficure 6. The (0,7 })-plane is divided into three regions which are significant in the

stability problem. In A4 instability occurs as steady convection. In B steady convective

instability occurs first but overstability is possible for higher A,. In-C overstability occurs

before steady convection.

For fixed values of the convective heat transport, {wT'},,, and the rate of dissipa-
tion of kinetic energy, a decrease of o in the overstable case reduces the effect of
the external constraint 7 2. To compensate for the reduction of ¢ it is necessary
that A, be decreased. In the steady system the energy balance at the point of
instability is unaltered by a change of . Therefore, in the overstable case, it is
possible for the value of the Rayleigh number to be smaller than the value
corresponding to the steady regime because the effect of the constraint is small
when the Prandtl number is small.

From the stability problem, we have derived information concerning the onset
of steady convective instability and of overstability. However, the amplitude of
the motions for a given value of A, the energetics of the fluid, the preferred

27 Fluid Mech, &
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motions for a given set of external parameters, and still other features are
unknowns which can be determined only in a finite-amplitude study. Therefore,
we shall now go on to a study of finite-amplitude steady convection.

3. Finite-amplitude steady convection

The equations which govern steady convection are given by (1.3), (1.11), (1.13)
and (1.14) with 8/or = 0. Thus, the following equations are obtained by collecting
terms in ¢, €2 and €3 respectively: equations corresponding to ¢, etc., can be found
in the same way:

2
P, = [VG +9‘2§z—2-,\ovg] wp = 0.
Pw, = A, Viwy— V2L +.7%’—V2h
1= 4 Vi, 00 % 100> (3.1)
e
Lwy = A Viwy+ A, Viw, — VE(Lg; + L) +-7_é‘z (Zoy + Zy)
— Vi(hoy + hyo) + ol{wo To} — wo To] Viwwy;
— VT, = oAqwy,
— V2T, = oAyw, + A, we— o hy, (3.2)
— V2T, = 0Agwy + oA w1 + 0 Ay wo + 0 [{wo T o} — WoTo] wo — 0 (hoy +Py);
ow
Ve, =g 8
Vo oz’
-V, = 9‘%_ (3.3)
1 oz 00’ .
ow
— V3, = .7—8—;—- (Zor+ Z10);
ow;, 0v; Ow; .
wtayta =0 (=012 (3.4)
Here the subscripts 4, j correspond to the order of the variables to be substituted
into each expression: e.g. k;; = V; .VT,--—a—z (w, T}).

The method of solution is the same as the method used in the non-rotating
problem (I). A brief outline of the method is given below.*

The form of w, can be determined by inspection from (3.1). Expressions for
Ty, e and v, are derived from the normalized expression for w, by means of
equations (3.2), (3.3) and (3.4). The right-hand side of the second equation of (3.1)
can then be computed directly since it is composed of zero-order functions only.
However, two difficulties appear at this point. The inhomogeneous term in the w,
equation will, in general, contain terms of the form of w, as well as the unknown
parameter A;. In solving for the particular solution for w,, one will obtain secular
terms in addition to terms which are spatially periodic. In addition, the homo-
geneous solution of w,; will contain the form of w, with an arbitrary amplitude.

* Note added in proof. A method for treating the finite-amplitude range has also been

proposed by L. P. Gor’kov (1957). His method and that of Malkus & Veronis yield the
same finite-amplitude results for A,.
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Since A, multiplies a term of the form of w, in the inhomogeneous term, we can
evaluate A, to cancel the remaining amplitudes of w,. Secular terms are thereby
eliminated and the assumed periodicity of the solution is maintained. Further-
more, by specifying that e be the total amplitude of that part of w which contains
w,, We can write {ww,},, = € or {w;wy},, = 0fori > 0,i.e. the homogeneous part of
w; (¢ > 0) which has the form of w, has zero amplitude. The system of equations
can now be solved for the w;, 7}, u,, ¥; and A;. We shall apply the method first to
determine an approximate finite-amplitude solution for the two-dimensional rolls.
Though this case is unrealistic, it is the only case which, with a reasonable amount
of effort, can be carried beyond the second approximation. Because therollisnot
truly descriptive of the actual physical system, we shall discuss certain qualitative
features of this case only. Later, in the analysis for the square cell, additional
observable features of the flow will be presented.

(@) Rolls
The solution to the stability problem is given by equations (2.7) and (2.8).
This is )
. 204, .
wy = 2 cos ek sin 7rz, Ty = —————, cosmaxsin 7z,
m a4+ 1)
(3.5)
Uy = z sin raxr cosmz, vy = 27, sin rax cos 2
L 872, Yo = a(a?+1) ’

where the value of & corresponding to a given value of 7] is given by (2.6), and A,
is given by (2.5)
The inhomogeneous term for w, can be evaluated directly; thus

0 0 47
Zigy = pw (vo. Vg) —E—)&(vo.Vuo) =518 2moce,
oo 0 .
0= 5 [55 (Vo-Vto) + 52 (V0. Vo) | = Vi(¥o- Vorg) = 0.
0 ——
hoo = Vo-VTo_éz(ono) = 0.
Therefore, Lw, = - m2a?A, w,.

Now A, is evaluated so as to cancel the form of w, from the right-hand side.
Since the only term containing the form of w, is A, Viw,,it isnecessary that A, = 0.

Thus, Ay =0, w=0 T,=0, u =0. (3.6)

The second equation of (3.3) gives

= — +—— sin 2max. 3.7
?, 27ra3(a2+1)sm oL (3.7)

To solve for w,, we note that Ly, = L,y = kg, = g = Zy = 0, and

02y  T?

T = 3 cos 3max — cos max]sin 7z
oz a?(a?+1) [ ] ’
242
— 202 . .
o{{wo T} — wo Tol Viw, = — 32—4_—10 cos raz(sin 37z — sin 72),
A, Viw, = — 27%a®A, cos max sin 7z,
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ala?l, T?
a?+1  o?(a?+1)

Thus, Lw,= [— 2m2a?A, + ] cos 7o sin 7z

372 . a?o?A,
cos Imax sin 1z —

+a_2(a2 +1) Er] cosTx sin3nz.  (3.8)

The first term on the right-hand side has the form of w, and must vanish. Hence,

a2, T

27 2722+ 1) 2mPaf(a®+ 1) (3.9)

The evaluation of A, provides the first finite-amplitude result. From the
expression (1.9) for the heat transport, we can write

H
Kﬂ m

where w and 7' are non-dimensional. Expanding w and 7' as in (1.15), we
have

= 1+ 5 {wT},, (3.10)

{wT'},, = €2[{wo T}y, + €{wo Ty -+ wy Tol + €{wo Ty + w1 Ty + wo T}y,

+€X{wo Ty +wy Ty + wy Ty + wy Toby, + 64w Ty + wy Ty + wy T+ wy Ty + w0y Tohy + -]
(3.11)

Therefore, to the €? approximation for the convective heat transport, we get
o o
X{WT}m = Xez{ono}w (3.12)

To the same approximation (1.16) becomes

A=A
2 0
=" (3.13)
H 2 T}, = < ﬁ) T,
ence, X{w }m = /\2 ) {wo 0}m
B 02, /10)
“ i (%) -

We can see from (3.14) that to the €% approximation the convective heat
transport varies inversely as A,. Table 1 contains values of the convective heat
transport o-{wT",,/(A — A,) of rolls for various values of o and 7%. The range of o is
restricted to the values for which overstability can also occur. Not that A, and
therefore o-{wT},, /(A — A,) are negative for small Prandtl numbers and positive for
larger values. In most of the range where A, is negative overstability will ocour
before steady convection. However, for sufficiently low rotation rates, over-
stability cannot arise and the flow will be steady.

Since €2 > 0, it is clear from (3.13) that negative A, implies that A < A,.
According to this analysis, which is pivoted about the linear stability problem,
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the system will behave as follows. As A increases toward A,, heat is transported
by pure conduction (figure 7). When A = A, convection will occur but now A can
be decreased below A, and convection will be maintained. According to the €2
approximation, one could decrease A indefinitely and convection would continue;
therefore, one must go to a higher approximation to determine when the curve
begins to turn up again.

T3
s A R

o 0-1 0-5 1 5 10 102
0-025 —0-0239 —0-00702 —0-00487 —0-00377 —0-00406 —0-00724
01 —0-569 —-0-117 —0-0808 —0-0619 —0-0671 —0-122
0-2 —6-01 —0-562 —0-365 —0-274 —0-:0299 —0-600
0-3 4-87 —1-94 —1-07 —0-735 —0-827 —2-16
0-4 2-99 —14-36 —3-24 —1-81 —2-17 —24-2
05 2-54 7-39 —630 — 560 —8-68 6:51
0-6 2-34 4:06 7-10 40-1 13-7 385
0-687 2-25 3-26 4-4] 6-77 5-75 3-16
0-7 2-23 3-19 4-23 6-56 5-37 3-09
0-8 2-18 2-80 3-37 4-40 3-86 2-74

T3
IO A Y

o 108 104 108 108 107 108
0-025 —0-0150 —0-0326 —0-0715 —0-168 —0-382 —1-06
0-1 —0-270 —0-690 —2-47 11-2 3-28 2-44
0-2 —1-82 77-6 3-66 2-565 2-21 2-09
0-3 29-6 3-53 2:50 2-23 2-09 2-04
0-4 4-20 2-64 2-25 2-14 2-05 2-02
0-5 3-01 2-37 2-16 2-10 2-03 2:01 4+
0-6 2-60 2-25 2-11 2-07 2-02 2-01 —
0-687 2-43 2-18 2-09 2-04 201+ 2-01 —
0-7 2:41 2:16 2:08 2:03 2-01 2-01—
0-8 2-29 2-14 2-06 2-02 2-01—- 2-00+

o{wT},, o2,

for rolls.

TaBrLE 1. Values of A=2, = T 02,

Experimentally, one would not observe the sequence of events described above.
If a finite-amplitude perturbation were present, the system would become
unstable at Ay (figure 7), and the motions would grow very quickly from C to 4,
i.e. until the fluid transported the amount of heat corresponding to point 4.
A further increase in A would be needed to increase A. On the other hand, if no
finite-amplitude disturbance were present, instability would occur at A,, but the
motions would grow very rapidly with A = A, until the heat transport corre-
sponded to point B. If the system were allowed to ‘run down’, i.e. if A were
decreased from a value above A,, then the system would always follow the path
BACO.

The onset of instability as a finite-amplitude disturbance in the rotating
system marks a definite point of departure from the results of the non-rotating
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system. In the latter case, convective heat transport is possible only for
values of A > A;. Why does the rotating system respond so differently in finite
amplitude? What is the mechanism for the occurrence of finite amplitude
instability

The answers to these questions can be found in equation (1.14). For the steady
convective case, we have

2 —
V3w+.72%§—-/\V%w = o[{wT},, —wT] V%w—l—f%——f_V%h—VZL. (3.15)
A
Aot B
Ay C --\-\---A
\\ A, approximation
G o

Fiaure 7. The A vs H curve when A, is negative.

0 0
The term Z = a—;(v.Vv)—@(v.Vu)
can be written in the form
Z=v,.Vi{—w,;.Vyw=V,.[v;{—w,w], (3.16)

where the subscript 1 corresponds to the horizontal vectors and w, is the horizontal
vorticity vector. If the term 7 (0Z/0z) is taken to the left-hand side of the equation
(3.15), the second term can be written (with the aid of (1.3))

.7'—a—a—zV1.{v1.9°—v1§+w1w}. (3.17)

The individual terms within the brackets correspond respectively to the hori-
zontal transport of imposed vertical vorticity, the horizontal transport of local
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vertical vorticity, and the vertical transport of horizontal vorticity. In finite
amplitude, therefore, the fluid can generate a local vorticity whose net effect is to
decrease the role of the constraining first term in (3.17). When the viscosity is
large, the generation of local vorticity is accompanied by strong viscous dissipa-
tion so that the non-linear terms will stabilize the system.

It is important to note that the possibility of a finite-amplitude instability is
brought about by interactions of the zero-average non-linear terms which do not
contribute per se to the distortion of the mean temperature profile. These terms
play an increasingly important role as the Prandtl number diminishes. In the
non-rotating system, the heat transport curve of a fluid with small Prandtl
number breaks away from the conduction line with a slope one-third greater than
that of pure conduction, whereas when the Prandtl number is large the slope of
the heat transport curve is twice the conduction slope. When an external con-
straint is present, the heat convected by the fluid varies as a function of the
constraint.

When A, is positive, heat is transported by convection only when A is increased
beyond A,. We shall discuss this case in some detail in a subsection on square cells.

When A, < 0, it is necessary to consider the next approximation in order to find
the point at which the A vs H curve turns upward. We can feel fairly confident that
the €2 approximation is valid only in a very limited range, otherwise the A, H curve
would cross the H axis, i.e. the fluid would transport a finite amount of heat in the
absence of a temperature gradient.

A, for rolls. Because of the vertical symmetry, A; = 0 for odd ¢. Hence, it is
necessary to go to the e* approximation to determine the higher-order effect on
the heat transport.

The equations governing the ¢* approximation can be determined from
equation (3.15) and from the expansions (1.15) and (1.16). The results only
will be listed here:

Wy = Wyq COS WAL SIN 3712 + Wy, cO8 Jmar sin 7z,

TAgWyy+ 02N, i TAgWp i
T, = TaEaiyg)  Cosmawsin 3mz + 729a2+1) °%® Smoc sinm (3.18)
_oTi cos 77 8in 71z;
at(a?+1)2 * ’
A3 = O,
o[ I} o2Ny (PAe/mt ] '
_ oI 1

_oNjat T3 [ 1 (1—ﬁ)+ 1 ]J

24 Taf2rD)|oE+1\"  B) a1
A 371 Ao
where i = T Wn =~ gaca B = me iy

A= (a2+9)3+9.7'§——a2;\—7;—’, B = (9a*+ 1)3+9'§—-9a2;‘?‘1’
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Values of A, for mercury (o = 0-025) and air (o = 0-687) are given in
table 2.

We can now determine the range of validity of the €% approximation. To the
¢t approximation, (1.16) becomes

A +A[A3+H4A(A - Ay)]
22, ’

€2 = (3.20)
where the positive sign in front of the radical has been chosen so that ¢ — 0 as
A — A, Only when A2 > |44,(A—A,)] is the €2 approximation valid. From the
values of A, and A, for air, A—A, = —}AZ/A, when A—A, = A, in the range
0 < 7% < 0-1. As 7% increases, the limiting value of A — A, decreases to 0-037, at
7% = 10 and then asymptotically approaches 0-16A,. For mercury the value of
A— A, beyond which the A, approximation is no longer valid is A, when 9% =
decreases to 0-0051, when % = 0-5, rises to 0-14A, when 7% = 10% and then
steadily decreases to 0-091, at.7 3 = 108. Therefore, the ¢* approximation is valid
for a rather limited range of A. The A, curve describes the system accurately in
a slightly smaller range of A.

T3 A, (air) A, (mercury) H A4 (air) A, (mercury)
01 0-0495 0-0971 108 ~0-164 0-956 x 102
05 0-168 0-286 104 —0-203 0-195 x 10~
1 0-230 0-354 105 —0-229 0-410 x 10-3
5 0-122 0-277 108 —0-245 0-797 x 104
10 0-042 0-196 107 —0-253 0-168 x 10-5
100 —0-101 0-0499 108 —0-257 0-280 x 10-5

TaBLE 2. A, for rolls.

In the non-rotating system (I), the €2 approximation for rolls is accurate for
A—24 € Ay. The more limited range of validity of A, for air in the rotating
problem can be traced to the stability problem itself. The system becomes
unstable to a disturbance with the form of the second mode, i.e. sin 27z, at a rela-
tively smaller value of A. It was shown in § 2 that (Ag),_s/(Ag)peg = (16)3 = 2:52 as
J} - o0, whereas in the non-rotating system the ratio equals 16. Since the finite-
amplitude solution is based on the linear stability problem, it can describe the
system only in the range in which the fluid is not unstable to other disturbances.
This range is ten times smaller in the rotating case (for large 73); therefore the
corresponding approximation is accurate in an equally limited range. This
reasoning does not apply to mercury where A, is negative. In this case, the range
of validity of the second-order approximation must be limited for the reason
mentioned earlier. Nor can we apply the above reasoning to account for the
extremely small range of validity of the €2 approximation for air when 773 = 10.
As we shall see later, the fluid behaves quite differently for these smaller values
of 7% than it does either for zero rotation or for higher rotation rates.

From the expressions for the heat transport (3.10) and (3.11), we have to fourth
order H

K:Bm -

1+ 0'762 Hwo To}m + €3{wo To} ], (3.21)



Cellular convection with finite amplitude in a rotating fluid 425

where the remaining terms in (3.11) vanish. Therefore,

B T
For mercury, A; < 0 and A4 > 0. Therefore, from (3.20), we note that the ampli-
tude €2 increases as a result of the higher approximation. H increases with €2 so
that the net effect of A is to turn the A vs H curve (figure 7) toward the right, i.e.
toward point 4. In order to determine the actual behaviour of the system as the
A vs H curve is turned upward again, it would be necessary to consider the next
approximation.

The most important result which we have obtained from this study of finite-
amplitude convection for rolls is that fluids with a sufficiently small Prandtl
number can become unstable to a finite-amplitude disturbance at a lower value
of A than A,. The non-linear vorticity generated by the finite-amplitude motions
enables the fluid toreduce the effect of the external constraint and thereby become
unstable at lower values of the external parameters.

H | oe? [ oA, 0T} 2]
I

= - 22
mo2+1) 204a?+ (3-22)

) Ay for rectangular cells

Using the method outlined earlier, we can determine A, for the rectangular cell.
The detailed analysis is rather tedious and lengthy, so that only the results will be
given.

The stability solution is

Wy = 2,/2cosnlxcosmmysinmz, Ty = 2./2 0N, cos nlx cos mmy sin 71z,

Uy = _[2y2m%, ! cos 7rlx sinm, +2‘/2lsin7rlxcos7r CO8 72
07 T lad(a?+1) Y+ Y| cos TR (3.23)
v 24217, —-sinzlzc 242m cos 7rlx sin c
0= | ez 1) SRl cos mmy ~— 3 2 sin mmy | cos 7z,
where 2 /2 is the normalization constant for w,, N, = Ao and 124+ m? = a2

Tt +1)
Equations (2.5) and (2.6) again determine A, and a2 as functions of ;. The first-
order functions are

w, = [a,(l, m) cos 27mlx + a,(l, m) cos 2mrmy] sin 272, \

17 = [6:(1;m) cos 2nlx +b,(l,m) cos 2mrmy] sin 27z,

7, ay 7,
v = [4l(l 0 sin 27lx — 1_71, sin 27Tmy] cos 2772 + Il (a1 1) sin 27lx

1

_ M 3.24)
t ot 250 sin 2nlx cos 2mmy, ¢ (

L in 27rlx + % 7y
m=—|7e dm(mi+1)

sin 2nmy] cos 27z

i S
- 2mma(at+ 1)

m;
sin 2mrmy — Q;TW_Z:-T) cos 27rlz sin 27rmy, J
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where A, =0,
8713127)72,20'N0 + 3271512m2(12 +1) [oc2 14 I3 ]
o o

(a2 + 1)2
I 16(EF 1) + T =Bl ’

Apy — 2ma Nym?[a?
wE+ 1

a2(l’m) = al(m>l)7 bZ(Z;m) = bl(m5 l)

al(l>m) =

b(l,m) =0

From these zero- and first-order functions and from (3.1), an expression for A, can
be obtained:

o2N, = 7® T3
Ao = T by 4 20 + 5 (4 Py [T - o 17
T2 w3 Bay, mPa, 3
ot [m2+l+l2+l (o ¥ 1)]’ (3.25)

As a function of the parameters o, Z; and the ratio I/m, expression (3.25) for A,
has a triply infinite set of values. We shall restrict our attention here to the values
of 72 which were considered in the subsection on rolls. Furthermore, we shall
consider only two values of o, those corresponding to mercury (o = 0-025) and
air (o = 0-687). The ratio I/m cannot be chosen arbitrarily, of course, for it is
a parameter whose value is determined by the physics of the system. In order to
decide which of the infinite number of values of I/m is chosen by the fluid we turn
now to the relative stability criterion which was developed in I.

The relative stability criterion is the answer to the following question. If all of
the mathematically possible solutions of a statistically steady physical system
are known, which of the solutions is stable to disturbances which have the form
of any of the other solutions? When all of the solutions are orthogonal to each
other (as in the present case), the criterion takes a particularly simple form. The
fluid chooses that solution which has the maximum value of {?},,. From (1.10)in
non-dimensional form, {#%,, can be written

1 +%: {{wT} —wT]3,, (3.26)

To the €% approximation, (3.26) is equal to

o2t — o*Niet oAN3(A - Ay)?
1+ =5 {{{wo Tolw~wo ToFhm = 1+ 555 =1+—;£@%—°l, (3.27)

where (3.13) was used to derive the last equality. Since Nyis not a function of [/m,
the solution with maximum {#?%},, at a given value of A is the solution with
minimum A, or maximum heat transport.

For this problem A, as given by (3.25) has a minimum at* [/m = oo for small 7%
and at*[/m = 1 for large 7 ;. The value of 7} at which the preferred shape crosses
over from I/m = oo to [/m = 1 depends upon the Prandtl number. Values of the

* When I/m = o0, the cellular geometry is that of limiting rectangles, i.e. the cells take
the form of rolls in the limit. When !/m = 1, the cells are square.



Cellular convection with finite amplitude in a rotating fluid 427

convective heat transport for air and mercury are given in table 3 for square cells
and for limiting rectangles.

A result which isimmediately evident upon comparing tables 1 and 3 is that the
value of the heat transport for limiting rectangles differs markedly from the value
for rolls. This difference was found also in the non-rotating case. Again the only
conclusion which we can draw from these results is that one must use the limiting
rectangle in the description of the two-dimensional case. Though neither the roll
nor the limiting rectangle can satisfy lateral experimental boundary conditions,
nevertheless the limiting rectangle can approximate long thin rectangular
cells.

Air Mercury Air Mercury
— —N - A ) I A
J? Square LR  Square LR 7! Square LR  Square LR
01 1-15 1-20 0-00623 0-0155 102 1-95 1-11 —0-0448 0-00993
0:5 0971 0961 0-00340 0-00455 104 206 1-23 —0-0361 0-0209
1 0-900 0-862 0-00275 0-00322 106 205 129 —0-0587 0-0445
5 0-896 0782 0-00262 0-00244 106 203 1-31 —-0-118 0-0924
10 0-983 0-807 0-00329 0-00270 10" 2-02 1-32 —0-249 0-184
102 1-49 1-02 0-0126 0-00481 106 201 1-33 —0-608 0-342

TaBLE 3. Convective heat transport (g{wT'},,)/(A —A,) for steady square
cells and limiting rectangles.

An additional fact which emergesfrom a comparison of tables 1 and 3 is that for
air the heat transport of squares exactly coincides with that of rolls when 7% is
large. Whether this is a chance coincidence or has some deeper significance has
not been determined. Clearly the physical factors which enter into the determina-
tion of A, are quite different in the two cases.

A definite qualitative difference between the two-dimensional and three-
dimensional cases is illustrated by the heat transport for mercury. For rolls
a finite-amplitude instability can occur throughout the range of 72 considered,
whereas limiting rectangles will not become unstable to finite-amplitude
perturbations.

We may note from table 3 that steady convective instability in mercury will
set in the form of limiting rectangles for the range 0 < 73 < 3. For higher values
of 73, convection occurs in the form of square cells. Since overstability can occur
(though at a higher Rayleigh number) when .73 = 4, further discussion about the
expected nature of convection must be postponed until the finite-amplitude
effects of overstability are presented.

One can predict the cellular structure of air over a much larger range of 732. Tt
is evident from table 3 that limiting rectangles will be preferred only when
T % < 0-5. Since overstability cannot set in until 7% = 108, convection will take
place in the form of steady square cells in the range 0-5 < I3 < 108.

It should be noted also that the very small amplitude of heat convection in
mercury indicates that the heat transport curve in the H vs A graph starts off
practically tangent to the conduction line when instability occurs.
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In air the convective heat transport is much larger than it is in mercury. An
interesting property for air exhibited by table 3 is that the convective heat
transport for both the limiting rectangle and the square approach asymptotic
values for large 7 2. The asymptotic value for square cells is equal to the value
for rolls. Furthermore, the non-rotating roll has precisely the same value
(o{wT '}/ (A — Ao) = 2) for all fluids. The value of the heat transport for limiting
rectangles at large 73, approaches the same value % as it has in the non-rotating
system.

The results for large 7 % must be reconsidered in the light of finite-amplitude
overstable motions. However, for small values of the Taylor number (< 102 for
air, < 10 for mercury) it ought to be possible to check the above results experi-
mentally. For instance, one ought to be able to see whether the limiting rectangle
is actually the preferred cellular shape in air at very low rotation rates. The slope
of the heat transport vs A curve ought to be much steeper for low rotation rates
than it is for zero rotation. Finally, the A, values for rolls in air are positive when
7% is small. If this result bears even a qualitative significance to the realizable
square or limiting rectangle, it would mean that for small 7% the heat transport is
smaller than the value given by the A, approximation.

To summarize the results of this section, we have found that in a fluid with
a small Prandtl number it is possible that a finite-amplitude instability can occur
before the fluid becomes unstable to infinitesimal perturbations. In this case, the
finite-amplitude motions partially cancel the effect of the imposed constraint. For
realizable cellular patterns in mercury this finite-amplitude instability will occur
only in the range where overstability occurs first. It is, therefore, necessary to
look into finite-amplitude overstable motions to determine whether the fluid can
indeed be unstable to finite-amplitude disturbances.

4. Finite-amplitude overstable motions

In the analysis of these motions, the method of solution outlined in the previous
section is inadequate. The difficulty which arises in the present case can be
demonstrated by the following argument.

Let w, = cospy7f(z,y) g(2) be the solution to (2.1c¢). Then u,, v, and T, can be
determined from the remaining equations of (2.1). The inhomogeneous terms of
the equations for w,, w,, etc., contain products of the lower-order functions, and
the individual inhomogeneous terms are operated on by operators such as
(8/oT) — V2. As aresult, terms of the type sin p,7 f(x,y) g(z) may appear as forcing
terms but they do not contribute to the evaluation of the A, since they are ortho-
gonal to the basic solution. Therefore, they remain as inhomogeneous terms and
will give rise to secular terms in w,, w,, etc., because they satisfy the basic homo-
geneous equation. One cannot avoid the difficulty by introducing an arbitrary
phase since the same difficulty arises regardless of the phase of the basic solution,
i.e. out of phase components are always generated.

The present difficulty is not unique to the overstable problem. Indeed, one can
conceive of examples in the steady problem in which the same problem arises. For
example, in the basic roll solution, w, = cos maxg(z), there are instances when
a generated inhomogeneous term has the form sin 7axg(z). In the examples of the
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previous section these ‘resonant’ terms always cancelled identically. However,
it is possible that in some problems this fortuitous cancellation will not occur.

To reduce the equations to a soluble sequence once again we add an additional
expansion. Specifically, let

T=t/p7 (4-1)
sothati—ﬁal_ 0 We nd pi .
ar otor Y@ now expand p in powers of € as
P =Poteps+EPyt..., (4.2)

where the p, are to be determined.

If we add (4.1) and (4.2) to the expansions (1.15) and (1.16), the equations
(1.11), (1.13) and (1.14) take the form (where we give only the ¢! terms (a) and
€2 terms (b))

_[{Po? _ e 2 9 wo\ves gy O w2 G P00 o\ ve _
Lw, = [(0' v ) ( 05 V2 V247 Do \% 5 — A e V2| Vi|w, =0,
(4.3a)

3pt 03 1 02 2\ 8 b 2 A
ool e i end

—Al(p" 0 VZ) VI} w0+.7(poaa Vz) o _ (p"i—w) Viho

oot 0z o
0
+( 6—t_V2) (G %-VZ) Loy (4.35)
Do 0 ow
0 ow 0
(Bof-v) o =7 02w (#49)
ete.
a 2
Poa—v Ty = o Aewy, (4.5a)
;) oT,
(Poa*t— Vz) T, = UAowl_P1a—tO+ oAy wy— Thgy; (4.50)
ete.

The continuity equation has the form (3.4).

One can now proceed in the same manner as in the steady case. However, both
sets of undetermined coefficients p; and A; are used to eliminate the resonant
terms whose forms are cosf(z,y) g(z) and sintf(z,y) g(z). Using this method we
find that the frequency p of the overstable oscillation changes with amplitude. It
is clear that if out-of-phase resonant terms had been generated in the steady case,
one would have had to expand « in powers of ¢, i.e. the basic spatial wave number
would have been a direct function of amplitude also.



430 G. Veronis

The algebra involved in the solution of the overstable case is so extremely
tedious and lengthy that only the solution to the stability problem and the
method of procedure will be outlined here. The expressions for w,, T}, etc., and for
Ay, Py will not be written explicitly.

For the general rectangle, the solution of the stability problem is*

wy = 4costcosnlx cosmmysinnz, N

4o A fmt

[ G, . B — 2 1 t 2 .: t . ‘
O pRimt+ (a®+ 1) [(x®+ 1) cos? 4 po/n?sint] cos mlx cos mmy sin nz,

l .
Uy = — 4{@ cost sin 7rlx cos mmy
m _.{o}a?+ 1) cost+ o(py/m?)sint] . (4.6)
+ ;.7; P T @+ 1) cos 77l sin mmy | cos M1z,
I _.o2%a?41)cost+o(py/m?) sint .
=4] - T 0 /
vy {a2 1 P i 1 1) sin 7rlx cos rmy

m ,
— — cost cos 7rlx sinrmy | cos 7rz.
o? J

The inhomogeneous term in (4.35) can be determined as a function of py, A; and
the remaining (known) parameters of the problem. We now have an expression
with non-resonant forcing terms plus terms of the type

[(ap, + b2, +¢) cost + (dp, + eA, + f) sint] cos iz cos mmy sinnz.

The coefficients a, b, ¢, d, e and f are functions of previously determined parameters.
One evaluates p, and A, so that the coefficients of the resonant term vanish. It is
then possible to go on and determine the higher order A; and p; in the same
manner.

Asin the steady case, A, vanishes and p, = 0 here. Therefore, we must, consider
62 terms to determine the first finite-amplitude effects. This evaluation was
carried out for the case of the general rectangle and numerical results were
computed for square cells and limiting rectangles in air and mercury. The results
for the convection heat transport (as given by the ¢* approximation (3.14)) for
overstability are shown in table 4.

A comparison of the values of the convective heat transport for air in tables 3
and 4 indicates that heat is convected in air by steady cellular motions for
T? < 10%. However, for 7% > 108, overstable oscillations with a cellular pattern
of squares will become the preferred motion in finite amplitude even though
instability occurs as steady convection. The preference for overstability is very
slight, and experimentally one may expect either type of motion to occur. The
sequence of preferred finite-amplitude motions in air is: steady convective

* We can, of course, include arbitrary phases in the horizontal co-ordinate dependence
and in the time dependence. However, no loss of generality is involved in writing the
solution as given by (4.6). The ensemble average is now an average over the horizontal

1 1 m 27
space and time periods, i.e. S f_lf_m fo { }dzxdyd:.
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limiting rectangles for 7% < 0-5, steady convective squares for 05 < I3 < 108,
and overstable square cells for 72 > 108,

The cross-over from steady convection to overstability in mercury takes place
at lower values of 2 and is indeed much more definite. As we noted earlier,
steady limiting rectangles occur for % < 3 and the system changes over to

Mercury Air
r A N f—"—/\—__—‘ﬁ

TE Square LR Square LR

5 0-00416 0-0016 — —
10 0-00431 0-00303 — —
102 0-0136 0-0207 — —
103 0-0394 0-0444 1-14 1-31
104 0-0733 0-0728 1-66 1-55
105 0-107 0-105 1-95 1-59
108 0-128 0-126 2-07 1-60
107 0-138 0-136 2-13 1-61
108 0-146 0-144 2-16 1-62

TaBLE 4. Convective heat transport for overstable square cells
and limiting rectangles.

LR (¢)

1
aWT), 2 Square (c) gW T,
~2o| 3 LR (o) , - Ao
Air, 4 Square (0) Air 4 I\{lzczrcury

103’10'7-%

Fiaure 8. The convective heat transport values for air and mercury as functions of .7 %. The
numbers on the portions of the curves lying between the dots mark the type of convective
motions which oceur in the specified ranges of Z 3. (c) corresponds to steady convective
motions, (0) to overstable motions.

steady square cells when 7% > 3. Overstable square cells are preferred when
J% = 4-5 and remain as the preferred motion until % = 20. However, at this
point overstable limiting rectangles come in and are preferred to squares until
T3 = 7 x 103, when overstable square cells become preferred again. These results
are summarized in figure 8. It should be noted that the preference for square
cells over limiting rectangles at large Taylor numbers is based on a very small
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difference in heat transport (1 to 2 %,). It may therefore be very difficult to obtain
any recognizable stable pattern unless one were to make the determination at
larger A where higher order effects may conceivably solidify the preference.

The convective heat transport for mercury is a small fraction of the conductive
heat transport throughout the range of 773 considered, and one may expect the
H vs A curve for A > A, to be practically tangent to the conduction line until higher
order effects become important. In air the heat transport curve breaks away
quite sharply after instability and has about twice the slope of the pure conduc-
tion line.

Mercury Air
e A s A ™
Tt Square LR Square LR
5 11-3 0-735 — —
10 2-30 1-80 — —
10® 0-332 1-18 — —
103 6-28 x 102 0-263 —2-14 1-33
104 5-46 x 103 6-03 x 102 —1-16 0-466
108 —~2-48 x 103 2:13x 102 —0-558 0-160
108 —1-93x 10-3 8-61 x 103 —0-292 0-0616
107 -9:91 x 10— 420 x 10-3 —0-138 0-0260
108 —5-80x 10 1-80 x 10-2 —0-0645 0-0115

TaBLE 5. The coefficient p,A,/p,A,; for mercury and air.

One of the most important results in the finite-amplitude study of overstable
convection is that neither mercury nor air become unstable to finite-amplitude
perturbations. Since the overstable oscillations in mercury take place at a much
lower value of A, than does steady convective instability, the fact that the latter
can become unstable to finite-amplitude perturbations will not be observed
experimentally.

The finite-amplitude effects on the frequency of the oscillation can be deter-
mined by (4.2) which, to the €% approximation, has the form

P Do, €
7?=7Tg 2P (4.7)

Using (3.13), equation (4.7) can be written

P _Pofy PrlofA
T 772{1 +P0’\2 (/\o 1)} (+8)

The coefficient p,Ay/p,A; is shown in table 5 for air and mercury. When the
change in the frequency is negative, the correction decreases the convective heat
transport (since A, is a function of p,). One of the most surprising features
exhibited by the change in the frequency is the magnitude of effect on the heat
transport even when the change in the frequency is extremely small, as it is for
higher rotation rates in mercury. Indeed, the value of A, in mercury without the
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P, correction is negative for 10* < 72 < 107. The change in frequency causes A,
to become positive, and the system is stable to finite-amplitude perturbations.
Thus, the non-linear change in frequency effectively stabilizes the system in this
part of the range. Where p, is positive, the non-linear change in frequency makes
the system less stable.

5. Summary and conclusions

The most important conclusion in the stability investigation is that over-
stability occurs because the fluid is thereby able to reduce the constraint of the
imposed rotation. A second conclusion of considerable interest is that in steady
convective instability the wavelength of the cell measured along the boundary
(as it is distorted by the rotation) is equal to the wavelength of the non-rotating
cell. Otherresults (which are explicitly orimplicitly contained in Chandrasekhar’s
original investigation (1953)) are that overstability cannot occur in a fluid with
a Prandtl number greater than ./ because the rate of dissipation of kinetic energy
always exceeds the rate of release of potential energy for larger o, and that
overstability cannot occur for sufficiently low rotation rates because the tendency
of the fluid to undo the external constraint is more than offset by the increased
dissipation due to the time-dependent motions.

For a range of the external parameters it is possible for the fluid, through
finite-amplitude growth, to decrease the effect of the external constraint by
generating a motion to counteract the effects of the imposed constraint. In cases
where this happens, the fluid may become unstable to finite-amplitude dis-
turbances before it becomes unstable to infinitesimal perturbations. Neither air
nor mercury, the two fluids considered here, will exhibit this finite-amplitude
behaviour under laboratory conditions.

More particular results in the finite-amplitude study are as follows. As the
rotation rate is increased, the preferred cellular pattern for convection in air
changes from steady limiting rectangles to steady squares to overstable squares
(overstable square cells are preferred in finite amplitude even though the fluid
first becomes unstable to steady convective motions). In mercury the sequence of
preferred cellular shapes changes with increasing Taylor numbers from steady
limiting rectangles, to steady squares, to overstable squares, to overstable
limiting rectangles, and finally, when 7% = 108, to overstable squares again. The
heat convected by mercury after instability is only a small fraction of the con-
ducted heat, and consequently the H vsA curve will not show the very sharp
breaks which are exhibited in the non-rotating system. In air the convective heat
transport is at least as large as the conductive transport for all rotation rates, and
the H vs A curve will show & sharp break at the point of instability.

The frequency of the oscillations in overstable motions is a direct function of
the amplitude. The change in frequency is too small to be noticeable in mercury
when 72 > 50. However, even when small, the change in frequency has a marked
effect on the heat transport.

According to the present investigation the fluid reacts to the imposed con-
straint by generating internal motions which counteract the external constraint.
This result hints rather strongly that in general, when a fluid is subjected to

28 Fluid Mech. §
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external constraints, it may generate motions which tend to offset the constraint. *
In particular, in an electrically conducting fluid it is possible that a magnetic
disturbance will grow so as to offset even further the constraint of the imposed
rotation. In such a case the preferred convective state would be one with a self-
generated magnetic field.

An additional suggested result with fairly broad application is the reason for
the possible occurrence of a finite-amplitude instability. In other problems, such
as shear flow in a channel, a finite amplitude instability can also occur (Meksyn &
Stuart 1951). The one feature which these problems have in common is the dual
role of viscosity mentioned in the introduction. Viscosity acts as an energy-
releasing mechanism as well as a dissipative mechanism. Since finite-amplitude
growth is invariably accompanied by increased viscous dissipation, one would
not expect a finite-amplitude instability to occur unless the fluid were able to
release even more potential energy. The fact that viscosity can fulfil the role as the
energy-releasing mechanism suggests that this dual role of viscosity is essential to
finite-amplitude instability.

It is interesting to note that the information concerning the appearance of
a finite-amplitude instability is a consequence of an investigation which is
pivoted about the linear stability problem. Application of the method described
here to other problems, such as shear flow in a channel, may yield important
results concerning the possible occurrence of finite-amplitude instability. One
still feels, however, that the tools which we possess for treating finite-amplitude
problems are woefully inadequate and that a more direct approach to non-linear
stability problems should be sought.

A note should be added about an alternative, integral, technique for deter-
mining finite-amplitude effects. The method employed by Stuart (1958) and
discussed in I is based on the power integral which can be derived by multiplying
(1.11) by T and averaging. If quantities with the form of the stability solution
are substituted into the power integral, one can then deduce the amplitude of
wor T as a function of the external parameter A. However, in the present problem
this type of evaluation would yield results which are misleading because the
principal effects in the determination of amplitude are those which result from
the zero-average non-linear terms. These terms do not appear in the power
integral.

Finally, what are the possible applications of these results to the fields of
geophysics and astrophysics? (¢) The formal technique described here together
with the relative stability criterion provides a means for determining the

* The first finite-amplitude result (A,) for roils was computed for an electrically con-
dueting fluid subjected to heating from below and eooling from above and with an imposed
magnetic field. As Chandrasekhar (1952) has shown, the imposed magnetic field acts as
a constraint on the system in much the same manner as does the rotation. In the finite-
amplitude computation, A, is negative for a restricted range of the parameter 5/, where 3
is the magnetic diffusivity. The range lies within the range of values of 9/« within which
overstability can occur. Therefore, the possibility of finite amplitude instability exists also
for this case, although it cannot occur in experiments realizable in the laboratory. The
parametric values correspond to those which can exist in stellar atmospheres as Chan-
drasekhar has shown.
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preferred finite-amplitude configuration of any statistically steady system with
a solved stability problem. The principal limitation of the method lies in the
formidable computations which may be required to carry out the analysis. (6) The
very important role of viscosity as the energy releasing mechanism in a gyro-
scopically constrained system indicates that one ought to exercise some care in
using such approximations as that of geostrophic flow in discussing the energetics
of the fluid. (¢) The ability of a fluid to react to externally imposed conditions may
lead to a fuller understanding of the mechanistic behaviour of large-scale systems
such as the atmosphere or the ocean.

A number of the ideas which are presented in this paper were a direct result of
discussions with W. V. R. Malkus, and I wish to acknowledge his many valuable
suggestions. The work was performed under the auspices of the Office of Naval
Research and is Contribution no. 985 from the Woods Hole Oceanographic
Institution.
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